buildrootschalter/toolchain/helpers.mk
Thomas Petazzoni 6b578c8d73 toolchain: rework C++ options
Instead of having BR2_GCC_CROSS_CXX and BR2_INSTALL_LIBSTDCPP, with
BR2_GCC_CROSS_CXX not being visible (and therefore being useless),
let's just keep BR2_INSTALL_LIBSTDCPP to enable C++ in the toolchain
and install C++ libraries on the target.

We also take that opportunity to make BR2_INSTALL_LIBSTDCPP an hidden
option, which is selected by an option in Buildroot toolchain support
or an option in External toolchain support, just as we did for other
toolchain features.

Some work definitely remains to be done :

 - The name BR2_INSTALL_LIBSTDCPP is ugly, but we keep it for the
   moment in order to avoid changing all packages.

 - We should clarify the other language-related options (Fortran,
   Java, Objective-C, etc.).

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Reviewed-by: "Yann E. MORIN" <yann.morin.1998@anciens.enib.fr>
Signed-off-by: Peter Korsgaard <jacmet@sunsite.dk>
2010-12-13 22:04:35 +01:00

236 lines
8.6 KiB
Makefile

# This Makefile fragment declares helper functions, usefull to handle
# non- buildroot-built toolchains, eg. purely external toolchains or
# toolchains (internally) built using crosstool-NG.
#
# Copy a toolchain library and its symbolic links from the sysroot
# directory to the target directory. Also optionaly strips the
# library.
#
# Most toolchains have their libraries either in /lib or /usr/lib
# relative to their ARCH_SYSROOT_DIR. Buildroot toolchains, however,
# have basic libraries in /lib, and libstdc++/libgcc_s in
# /usr/<target-name>/lib(64).
#
# $1: arch specific sysroot directory
# $2: library name
# $3: destination directory of the libary, relative to $(TARGET_DIR)
#
copy_toolchain_lib_root = \
ARCH_SYSROOT_DIR="$(strip $1)"; \
LIB="$(strip $2)"; \
DESTDIR="$(strip $3)" ; \
\
LIBS=`(cd $${ARCH_SYSROOT_DIR}; \
find -L . -path "./lib/$${LIB}.*" -o \
-path "./usr/lib/$${LIB}.*" -o \
-path "./usr/$(TOOLCHAIN_EXTERNAL_PREFIX)/lib*/$${LIB}.*" \
)` ; \
for FILE in $${LIBS} ; do \
LIB=`basename $${FILE}`; \
LIBDIR=`dirname $${FILE}` ; \
while test \! -z "$${LIB}"; do \
FULLPATH="$${ARCH_SYSROOT_DIR}/$${LIBDIR}/$${LIB}" ; \
rm -fr $(TARGET_DIR)/$${DESTDIR}/$${LIB}; \
mkdir -p $(TARGET_DIR)/$${DESTDIR}; \
if test -h $${FULLPATH} ; then \
cp -d $${FULLPATH} $(TARGET_DIR)/$${DESTDIR}/; \
elif test -f $${FULLPATH}; then \
$(INSTALL) -D -m0755 $${FULLPATH} $(TARGET_DIR)/$${DESTDIR}/$${LIB}; \
else \
exit -1; \
fi; \
LIB="`readlink $${FULLPATH}`"; \
done; \
done; \
\
echo -n
#
# Copy the full external toolchain sysroot directory to the staging
# dir. The operation of this function is rendered a little bit
# complicated by the support for multilib toolchains.
#
# We start by copying etc, lib, sbin and usr from the sysroot of the
# selected architecture variant (as pointed by ARCH_SYSROOT_DIR). This
# allows to import into the staging directory the C library and
# companion libraries for the correct architecture variant. We
# explictly only copy etc, lib, sbin and usr since other directories
# might exist for other architecture variants (on Codesourcery
# toolchain, the sysroot for the default architecture variant contains
# the armv4t and thumb2 subdirectories, which are the sysroot for the
# corresponding architecture variants), and we don't want to import
# them.
#
# Then, if the selected architecture variant is not the default one
# (i.e, if SYSROOT_DIR != ARCH_SYSROOT_DIR), then we :
#
# * Import the header files from the default architecture
# variant. Header files are typically shared between the sysroots
# for the different architecture variants. If we use the
# non-default one, header files were not copied by the previous
# step, so we copy them here from the sysroot of the default
# architecture variant.
#
# * Create a symbolic link that matches the name of the subdirectory
# for the architecture variant in the original sysroot. This is
# required as the compiler will by default look in
# sysroot_dir/arch_variant/ for libraries and headers, when the
# non-default architecture variant is used. Without this, the
# compiler fails to find libraries and headers.
#
# $1: main sysroot directory of the toolchain
# $2: arch specific sysroot directory of the toolchain
# $3: arch specific subdirectory in the sysroot
#
copy_toolchain_sysroot = \
SYSROOT_DIR="$(strip $1)"; \
ARCH_SYSROOT_DIR="$(strip $2)"; \
ARCH_SUBDIR="$(strip $3)"; \
for i in etc lib sbin usr ; do \
if [ -d $${ARCH_SYSROOT_DIR}/$$i ] ; then \
cp -a $${ARCH_SYSROOT_DIR}/$$i $(STAGING_DIR)/ ; \
fi ; \
done ; \
if [ `readlink -f $${SYSROOT_DIR}` != `readlink -f $${ARCH_SYSROOT_DIR}` ] ; then \
if [ ! -d $${ARCH_SYSROOT_DIR}/usr/include ] ; then \
cp -a $${SYSROOT_DIR}/usr/include $(STAGING_DIR)/usr ; \
fi ; \
ln -s . $(STAGING_DIR)/$(ARCH_SUBDIR) ; \
fi ; \
find $(STAGING_DIR) -type d | xargs chmod 755
#
# Create lib64 -> lib and usr/lib64 -> usr/lib symbolic links in the
# target and staging directories. This is needed for some 64 bits
# toolchains such as the Crosstool-NG toolchains, for which the path
# to the dynamic loader and other libraries is /lib64, but the
# libraries are stored in /lib.
#
create_lib64_symlinks = \
(cd $(TARGET_DIR) ; ln -s lib lib64) ; \
(cd $(TARGET_DIR)/usr ; ln -s lib lib64) ; \
(cd $(STAGING_DIR) ; ln -s lib lib64) ; \
(cd $(STAGING_DIR)/usr ; ln -s lib lib64)
#
# Check the availability of a particular glibc feature. We assume that
# all Buildroot toolchain options are supported by glibc, so we just
# check that they are enabled.
#
# $1: Buildroot option name
# $2: feature description
#
check_glibc_feature = \
if [ x$($(1)) != x"y" ] ; then \
echo "$(2) available in C library, please enable $(1)" ; \
exit 1 ; \
fi
#
# Check the correctness of a glibc external toolchain configuration.
# 1. Check that the C library selected in Buildroot matches the one
# of the external toolchain
# 2. Check that all the C library-related features are enabled in the
# config, since glibc always supports all of them
#
# $1: sysroot directory
#
check_glibc = \
SYSROOT_DIR="$(strip $1)"; \
if ! test -f $${SYSROOT_DIR}/lib/ld-linux*.so.* -o -f $${SYSROOT_DIR}/lib/ld.so.* ; then \
echo "Incorrect selection of the C library"; \
exit -1; \
fi; \
$(call check_glibc_feature,BR2_LARGEFILE,Large file support) ;\
$(call check_glibc_feature,BR2_INET_IPV6,IPv6 support) ;\
$(call check_glibc_feature,BR2_INET_RPC,RPC support) ;\
$(call check_glibc_feature,BR2_ENABLE_LOCALE,Locale support) ;\
$(call check_glibc_feature,BR2_USE_WCHAR,Wide char support) ;\
$(call check_glibc_feature,BR2_PROGRAM_INVOCATION,Program invocation support)
#
# Check the conformity of Buildroot configuration with regard to the
# uClibc configuration of the external toolchain, for a particular
# feature.
#
# $1: uClibc macro name
# $2: Buildroot option name
# $3: uClibc config file
# $4: feature description
#
check_uclibc_feature = \
IS_IN_LIBC=`grep -q "\#define $(1) 1" $(3) && echo y` ; \
if [ x$($(2)) != x"y" -a x$${IS_IN_LIBC} = x"y" ] ; then \
echo "$(4) available in C library, please enable $(2)" ; \
exit 1 ; \
fi ; \
if [ x$($(2)) = x"y" -a x$${IS_IN_LIBC} != x"y" ] ; then \
echo "$(4) not available in C library, please disable $(2)" ; \
exit 1 ; \
fi
#
# Check the correctness of a uclibc external toolchain configuration
# 1. Check that the C library selected in Buildroot matches the one
# of the external toolchain
# 2. Check that the features enabled in the Buildroot configuration
# match the features available in the uClibc of the external
# toolchain
#
# $1: sysroot directory
#
check_uclibc = \
SYSROOT_DIR="$(strip $1)"; \
if ! test -f $${SYSROOT_DIR}/lib/ld*-uClibc.so.* ; then \
echo "Incorrect selection of the C library"; \
exit -1; \
fi; \
UCLIBC_CONFIG_FILE=$${SYSROOT_DIR}/usr/include/bits/uClibc_config.h ; \
$(call check_uclibc_feature,__UCLIBC_HAS_LFS__,BR2_LARGEFILE,$${UCLIBC_CONFIG_FILE},Large file support) ;\
$(call check_uclibc_feature,__UCLIBC_HAS_IPV6__,BR2_INET_IPV6,$${UCLIBC_CONFIG_FILE},IPv6 support) ;\
$(call check_uclibc_feature,__UCLIBC_HAS_RPC__,BR2_INET_RPC,$${UCLIBC_CONFIG_FILE},RPC support) ;\
$(call check_uclibc_feature,__UCLIBC_HAS_LOCALE__,BR2_ENABLE_LOCALE,$${UCLIBC_CONFIG_FILE},Locale support) ;\
$(call check_uclibc_feature,__UCLIBC_HAS_WCHAR__,BR2_USE_WCHAR,$${UCLIBC_CONFIG_FILE},Wide char support) ;\
$(call check_uclibc_feature,__UCLIBC_HAS_PROGRAM_INVOCATION_NAME__,BR2_PROGRAM_INVOCATION,$${UCLIBC_CONFIG_FILE},Program invocation support)
#
# Check that the Buildroot configuration of the ABI matches the
# configuration of the external toolchain.
#
check_arm_abi = \
EXT_TOOLCHAIN_TARGET=$(shell LANG=C $(TARGET_CC) -v 2>&1 | grep ^Target | cut -f2 -d ' ') ; \
if echo $${EXT_TOOLCHAIN_TARGET} | grep -q 'eabi$$' ; then \
EXT_TOOLCHAIN_ABI="eabi" ; \
else \
EXT_TOOLCHAIN_ABI="oabi" ; \
fi ; \
if [ x$(BR2_ARM_OABI) = x"y" -a $${EXT_TOOLCHAIN_ABI} = "eabi" ] ; then \
echo "Incorrect ABI setting" ; \
exit 1 ; \
fi ; \
if [ x$(BR2_ARM_EABI) = x"y" -a $${EXT_TOOLCHAIN_ABI} = "oabi" ] ; then \
echo "Incorrect ABI setting" ; \
exit 1 ; \
fi
#
# Check that the external toolchain supports C++
#
check_cplusplus = \
$(TARGET_CXX) -v > /dev/null 2>&1 ; \
if test $$? -ne 0 ; then \
echo "C++ support is selected but is not available in external toolchain" ; \
exit 1 ; \
fi
#
# Check that the cross-compiler given in the configuration exists
#
check_cross_compiler_exists = \
$(TARGET_CC) -v > /dev/null 2>&1 ; \
if test $$? -ne 0 ; then \
echo "Cannot execute cross-compiler '$(TARGET_CC)'" ; \
exit 1 ; \
fi