buildrootschalter/package/Makefile.in

416 lines
12 KiB
Makefile
Raw Normal View History

2007-08-22 13:47:22 +02:00
ifndef MAKE
MAKE := make
endif
ifndef HOSTMAKE
HOSTMAKE = $(MAKE)
endif
HOSTMAKE := $(shell which $(HOSTMAKE) || type -p $(HOSTMAKE) || echo make)
# If BR2_LEVEL is 0, scale the maximum concurrency with the number of
# CPUs. An additional job is used in order to keep processors busy
# while waiting on I/O.
# If the number of processors is not available, assume one.
ifeq ($(BR2_JLEVEL),0)
PARALLEL_JOBS := $(shell echo \
$$((1 + `getconf _NPROCESSORS_ONLN 2>/dev/null || echo 1`)))
else
PARALLEL_JOBS := $(BR2_JLEVEL)
endif
MAKE1 := $(HOSTMAKE) -j1
MAKE := $(HOSTMAKE) $(if $(PARALLEL_JOBS),-j$(PARALLEL_JOBS))
ifeq ($(BR2_TOOLCHAIN_BUILDROOT),y)
TARGET_VENDOR = $(call qstrip,$(BR2_TOOLCHAIN_BUILDROOT_VENDOR))
else
TARGET_VENDOR = buildroot
endif
# Sanity checks
ifeq ($(TARGET_VENDOR),)
$(error BR2_TOOLCHAIN_BUILDROOT_VENDOR is not allowed to be empty)
endif
ifeq ($(TARGET_VENDOR),unknown)
$(error BR2_TOOLCHAIN_BUILDROOT_VENDOR cannot be 'unknown'. \
It might be confused with the native toolchain)
endif
# Compute GNU_TARGET_NAME
GNU_TARGET_NAME = $(ARCH)-$(TARGET_VENDOR)-$(TARGET_OS)-$(LIBC)$(ABI)
# FLAT binary format needs uclinux
ifeq ($(BR2_BINFMT_FLAT),y)
TARGET_OS = uclinux
else
TARGET_OS = linux
endif
ifeq ($(BR2_TOOLCHAIN_USES_UCLIBC),y)
LIBC = uclibc
else ifeq ($(BR2_TOOLCHAIN_USES_MUSL),y)
LIBC = musl
else
LIBC = gnu
endif
# The ABI suffix is a bit special on ARM, as it needs to be
# -uclibcgnueabi for uClibc EABI, and -gnueabi for glibc EABI.
# This means that the LIBC and ABI aren't strictly orthogonal,
# which explains why we need the test on LIBC below.
ifeq ($(BR2_arm)$(BR2_armeb),y)
ifeq ($(LIBC),uclibc)
ABI = gnueabi
else
ABI = eabi
endif
ifeq ($(BR2_ARM_EABIHF),y)
ABI := $(ABI)hf
arch: improve ARM floating point support and add support for EABIhf This commit introduces the support for the EABIhf ABI, next to the existing support we have for EABI and OABI (even though OABI support is deprecated). EABIhf allows to improve performance of floating point workload by using floating point registers to transfer floating point arguments when calling functions, instead of using integer registers to do, as is done in the 'softfp' floating point model of EABI. In addition to this, this commit introduces a list of options for the floating point support: * Software floating point * VFP * VFPv3 * VFPv3-D16 * VFPv4 * VFPv4-D16 and it introduces some logic to make sure the options are only visible when it makes sense, depending on the ARM core being selected. This is however made complicated by the fact that certain VFP capabilities are mandatory on some cores, but optional on some other cores. The kconfig logic tries to achieve the following goals: * Hide options that are definitely not possible. * Use safe default values (i.e for Cortex-A5 and A7, the presence of the VFPv4 unit is optional, so we default on software floating point on these cores).. * Show the available possibilities, even if some of them are not necessarily working on a particular core (again, for the Cortex-A5 and A7 cores, there is no way of knowing whether the particular variant used by the user has VFPv4 or not, so we select software floating point by default, but still show VFP/VFPv3/VFPv4 options). It is worth noting that this commit doesn't add support for all possible -mfpu= values on ARM. We haven't added support for fpa, fpe2, fpe3, maverick (those four are only used on very old ARM cores), for vfpv3-fp16, vfpv3-d16-fp16, vfpv3xd, vfpv3xd-fp16, neon-fp16, vfpv4-sp-d16. They can be added quite easily if needed thanks to the new organization of the Config.in options. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Peter Korsgaard <jacmet@sunsite.dk>
2013-07-16 10:03:14 +02:00
endif
endif
# For FSL PowerPC there's SPE
ifeq ($(BR2_powerpc_SPE),y)
ABI = spe
# MPC8540s are e500v1 with single precision FP
ifeq ($(BR2_powerpc_8540),y)
TARGET_ABI += -mabi=spe -mfloat-gprs=single -Wa,-me500
endif
ifeq ($(BR2_powerpc_8548),y)
TARGET_ABI += -mabi=spe -mfloat-gprs=double -Wa,-me500x2
endif
ifeq ($(BR2_powerpc_e500mc),y)
TARGET_ABI += -mabi=spe -mfloat-gprs=double -Wa,-me500mc
endif
endif
# Use longcalls option for Xtensa globally.
# The 'longcalls' option allows calls across a greater range of addresses,
# and is required for some packages. While this option can degrade both
# code size and performance, the linker can usually optimize away the
# overhead when a call ends up within a certain range.
#
# Use text-section-literals for Xtensa globally.
# Collecting literals into separate section can be advantageous if that
# section is placed into DTCM at link time. This is applicable for code
# running on bare metal, but makes no sense under linux, where userspace
# is isolated from the physical memory details. OTOH placing literals into
# separate section breaks build of huge source files, because l32r
# instruction can only access literals in 256 KBytes range.
#
ifeq ($(BR2_xtensa),y)
TARGET_ABI += -mlongcalls -mtext-section-literals
endif
ifeq ($(BR2_arc)$(BR2_ARC_ATOMIC_EXT),yy)
TARGET_ABI += -matomic
endif
STAGING_SUBDIR = usr/$(GNU_TARGET_NAME)/sysroot
STAGING_DIR = $(HOST_DIR)/$(STAGING_SUBDIR)
TARGET_OPTIMIZATION := $(call qstrip,$(BR2_TARGET_OPTIMIZATION))
ifeq ($(BR2_OPTIMIZE_0),y)
TARGET_OPTIMIZATION += -O0
endif
ifeq ($(BR2_OPTIMIZE_1),y)
TARGET_OPTIMIZATION += -O1
endif
ifeq ($(BR2_OPTIMIZE_2),y)
TARGET_OPTIMIZATION += -O2
endif
ifeq ($(BR2_OPTIMIZE_3),y)
TARGET_OPTIMIZATION += -O3
endif
ifeq ($(BR2_OPTIMIZE_S),y)
TARGET_OPTIMIZATION += -Os
endif
ifeq ($(BR2_DEBUG_1),y)
TARGET_DEBUGGING = -g1
endif
ifeq ($(BR2_DEBUG_2),y)
TARGET_DEBUGGING = -g2
endif
ifeq ($(BR2_DEBUG_3),y)
TARGET_DEBUGGING = -g3
endif
ifeq ($(BR2_LARGEFILE),y)
TARGET_CPPFLAGS += -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64
endif
TARGET_CFLAGS = $(TARGET_CPPFLAGS) $(TARGET_ABI) $(TARGET_OPTIMIZATION) $(TARGET_DEBUGGING)
TARGET_CXXFLAGS = $(TARGET_CFLAGS)
TARGET_LDFLAGS = $(call qstrip,$(BR2_TARGET_LDFLAGS))
ifeq ($(BR2_BINFMT_FLAT),y)
TARGET_CFLAGS += $(if $($(PKG)_FLAT_STACKSIZE),-Wl$(comma)-elf2flt=-s$($(PKG)_FLAT_STACKSIZE),\
-Wl$(comma)-elf2flt)
TARGET_CXXFLAGS += $(if $($(PKG)_FLAT_STACKSIZE),-Wl$(comma)-elf2flt=-s$($(PKG)_FLAT_STACKSIZE),\
-Wl$(comma)-elf2flt)
TARGET_LDFLAGS += $(if $($(PKG)_FLAT_STACKSIZE),-elf2flt=-s$($(PKG)_FLAT_STACKSIZE),-elf2flt)
endif
ifeq ($(BR2_BINFMT_FLAT_SHARED),y)
TARGET_LDFLAGS += -mid-shared-library -mshared-library-id=0
TARGET_CFLAGS += -mid-shared-library -mshared-library-id=0
TARGET_CXXFLAGS += -mid-shared-library -mshared-library-id=0
endif
ifeq ($(BR2_BINFMT_FLAT_SEP_DATA),y)
TARGET_LDFLAGS += -msep-data
TARGET_CFLAGS += -msep-data
TARGET_CXXFLAGS += -msep-data
endif
ifeq ($(BR2_ENABLE_SSP),y)
TARGET_CFLAGS += -fstack-protector-all
TARGET_CXXFLAGS += -fstack-protector-all
endif
ifeq ($(BR2_TOOLCHAIN_BUILDROOT),y)
TARGET_CROSS = $(HOST_DIR)/usr/bin/$(GNU_TARGET_NAME)-
else
TARGET_CROSS = $(HOST_DIR)/usr/bin/$(call qstrip,$(BR2_TOOLCHAIN_EXTERNAL_PREFIX))-
endif
# Define TARGET_xx variables for all common binutils/gcc
TARGET_AR = $(TARGET_CROSS)ar
TARGET_AS = $(TARGET_CROSS)as
TARGET_CC = $(TARGET_CROSS)gcc
TARGET_CPP = $(TARGET_CROSS)cpp
TARGET_CXX = $(TARGET_CROSS)g++
TARGET_FC = $(TARGET_CROSS)gfortran
TARGET_LD = $(TARGET_CROSS)ld
TARGET_NM = $(TARGET_CROSS)nm
TARGET_RANLIB = $(TARGET_CROSS)ranlib
TARGET_READELF = $(TARGET_CROSS)readelf
TARGET_OBJCOPY = $(TARGET_CROSS)objcopy
TARGET_OBJDUMP = $(TARGET_CROSS)objdump
TARGET_CC_NOCCACHE := $(TARGET_CC)
TARGET_CXX_NOCCACHE := $(TARGET_CXX)
ifeq ($(BR2_CCACHE),y)
TARGET_CC := $(CCACHE) $(TARGET_CC)
TARGET_CXX := $(CCACHE) $(TARGET_CXX)
endif
ifeq ($(BR2_STRIP_strip),y)
STRIP_STRIP_DEBUG := --strip-debug
STRIP_STRIP_UNNEEDED := --strip-unneeded
STRIP_STRIP_ALL := --strip-all
TARGET_STRIP = $(TARGET_CROSS)strip
STRIPCMD = $(TARGET_CROSS)strip --remove-section=.comment --remove-section=.note
KSTRIPCMD = $(STRIPCMD) $(STRIP_STRIP_UNNEEDED)
endif
ifeq ($(BR2_STRIP_sstrip),y)
STRIP_STRIP_DEBUG :=
STRIP_STRIP_UNNEEDED :=
STRIP_STRIP_ALL :=
TARGET_STRIP = $(HOST_DIR)/usr/bin/$(GNU_TARGET_NAME)-sstrip
STRIPCMD = $(TARGET_STRIP)
KSTRIPCMD = $(TARGET_CROSS)strip --remove-section=.comment --remove-section=.note --strip-unneeded
endif
ifeq ($(BR2_STRIP_none),y)
TARGET_STRIP = true
STRIPCMD = $(TARGET_STRIP)
KSTRIPCMD = $(TARGET_STRIP)
endif
INSTALL := $(shell which install || type -p install)
FLEX := $(shell which flex || type -p flex)
BISON := $(shell which bison || type -p bison)
SED := $(shell which sed || type -p sed) -i -e
UNZIP := $(shell which unzip || type -p unzip) -q
APPLY_PATCHES = support/scripts/apply-patches.sh $(if $(QUIET),-s)
HOST_CPPFLAGS = -I$(HOST_DIR)/usr/include
HOST_CFLAGS ?= -O2
HOST_CFLAGS += $(HOST_CPPFLAGS)
HOST_CXXFLAGS += $(HOST_CFLAGS)
Solve the host tools relying on host libraries problem We build host tools installed in $(HOST_DIR)/usr/bin, and some of them rely on host libraries in $(HOST_DIR)/usr/lib. So when these host tools are executed, they need to find the host libraries, which are not installed in a default location. In c1b6242fdcf2cff7ebf09fec4cc1be58963e8427 we tried to use LD_LIBRARY_PATH when building target packages to solve this problem. Unfortunately, LD_LIBRARY_PATH is not only used to find libraries at run-time, but also at compile time. So it leads the build of some packages, such as icu, to fail. Therefore, in 0d1830b07db4ebfd14e77a258de6fb391e57e960, we reverted the LD_LIBRARY_PATH idea. The other option to solve this problem was to hardcode a RPATH value in the host binaries that would reference the location of host libraries. We added this -Wl,-rpath option to HOST_CFLAGS in 6b939d40f6a29a43277566adc9d4312d49cb3abf. Unfortunately, this caused problems when building binutils, as reported in bug 1789 so this change was reverted in e1a7d916e9eeaa215551740de40c055130d6c073. Then, we tried to use -Wl,-rpath in HOST_LDFLAGS, but it was causing problems with fakeroot not recognizing 'ld' as the GNU linker, since the -Wl,-rpath cannot be understood by 'ld' directly, only by 'gcc'. This commit is a new attempt at using HOST_LDFLAGS, but in this case we modified the definition of HOST_LD to *not* contain HOST_LDFLAGS. LDFLAGS are being set separatly. It solved the fakeroot issue and was tested against nearly 300 packages of Buildroot. For more details on this story, see http://lists.busybox.net/pipermail/buildroot/2010-June/035580.html http://lists.busybox.net/pipermail/buildroot/2010-June/035581.html http://lists.busybox.net/pipermail/buildroot/2010-June/035586.html http://lists.busybox.net/pipermail/buildroot/2010-June/035609.html https://bugs.busybox.net/show_bug.cgi?id=1789 Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2010-06-25 14:15:20 +02:00
HOST_LDFLAGS += -L$(HOST_DIR)/lib -L$(HOST_DIR)/usr/lib -Wl,-rpath,$(HOST_DIR)/usr/lib
# hostcc version as an integer - E.G. 4.3.2 => 432
HOSTCC_VERSION := $(shell $(HOSTCC_NOCCACHE) --version | \
sed -n 's/^.* \([0-9]*\)\.\([0-9]*\)\.\([0-9]*\)[ ]*.*$$/\1\2\3/p')
# host-intltool should be executed with the system perl, so we save
# the path to the system perl, before a host-perl built by Buildroot
# might get installed into $(HOST_DIR)/usr/bin and therefore appears
# in our PATH. This system perl will be used as INTLTOOL_PERL.
export PERL=$(shell which perl)
# host-intltool needs libxml-parser-perl, which Buildroot installs in
# $(HOST_DIR)/usr/lib/perl, so we must make sure that the system perl
# finds this perl module by exporting the proper value for PERL5LIB.
export PERL5LIB=$(HOST_DIR)/usr/lib/perl
TARGET_CONFIGURE_OPTS = PATH=$(BR_PATH) \
AR="$(TARGET_AR)" \
AS="$(TARGET_AS)" \
Adding Central config.cache options The following changes allow for use of a central configure cache file. This speeds up configuration of packages. Its use is configurable at the top level (BR2_CONFIG_CACHE - default n). Old style makefiles can use it if they use the following MACRO in makefiles: $(AUTO_CONFIGURE_TARGET) see my change to directfb.mk. New style Autotools.in will use it if you set the global option. However you can enable the global option and on a per package overrule it by doing the following: $(PKGNAME)_USE_CONFIG_CACHE = NO see fontconfig.mk for an example of this. Finally I have removed a few config variable settings which indicated no CXX compiler as this is wrong and breaks the build when using this central cache. Config.in | 8 ++++++++ package/Makefile.autotools.in | 5 ++++- package/Makefile.in | 28 +++++++++++++++++++++++++++- package/atk/atk.mk | 2 +- package/directfb/directfb.mk | 7 +------ package/fontconfig/fontconfig.mk | 3 +++ package/libglib2/libglib2.mk | 2 +- package/libgtk2/libgtk2.mk | 1 - 8 files changed, 45 insertions(+), 11 deletions(-) I would appreciate feedback on this change (I have been testing for 2-3 weeks) But I can never test all cases! If you enable the BR2_CONFIG_CACHE option some Makefile.autotools.in based packages may now break - I cannot build them all. In this case you may need to remove config options that are being hardcoded all over the place (like gtk saying we have 2 CXX compiler) or disable the use of CONFIG CACHE file like I have done in fontconfig. I can build all packages required to get WebKit on DirectFB up and running and it runs fine. I will try to resolve any issues this creates as fast as I can. Signed-off-by: Daniel Laird <daniel.j.laird@nxp.com>
2008-11-28 15:20:47 +01:00
LD="$(TARGET_LD)" \
NM="$(TARGET_NM)" \
CC="$(TARGET_CC)" \
GCC="$(TARGET_CC)" \
CPP="$(TARGET_CPP)" \
CXX="$(TARGET_CXX)" \
FC="$(TARGET_FC)" \
RANLIB="$(TARGET_RANLIB)" \
READELF="$(TARGET_READELF)" \
STRIP="$(TARGET_STRIP)" \
OBJCOPY="$(TARGET_OBJCOPY)" \
OBJDUMP="$(TARGET_OBJDUMP)" \
AR_FOR_BUILD="$(HOSTAR)" \
AS_FOR_BUILD="$(HOSTAS)" \
CC_FOR_BUILD="$(HOSTCC)" \
GCC_FOR_BUILD="$(HOSTCC)" \
CXX_FOR_BUILD="$(HOSTCXX)" \
FC_FOR_BUILD="$(HOSTFC)" \
LD_FOR_BUILD="$(HOSTLD)" \
CPPFLAGS_FOR_BUILD="$(HOST_CPPFLAGS)" \
CFLAGS_FOR_BUILD="$(HOST_CFLAGS)" \
CXXFLAGS_FOR_BUILD="$(HOST_CXXFLAGS)" \
LDFLAGS_FOR_BUILD="$(HOST_LDFLAGS)" \
FCFLAGS_FOR_BUILD="$(HOST_FCFLAGS)" \
DEFAULT_ASSEMBLER="$(TARGET_AS)" \
DEFAULT_LINKER="$(TARGET_LD)" \
CPPFLAGS="$(TARGET_CPPFLAGS)" \
CFLAGS="$(TARGET_CFLAGS)" \
CXXFLAGS="$(TARGET_CXXFLAGS)" \
LDFLAGS="$(TARGET_LDFLAGS)" \
FCFLAGS="$(TARGET_FCFLAGS)" \
PKG_CONFIG="$(PKG_CONFIG_HOST_BINARY)" \
STAGING_DIR="$(STAGING_DIR)" \
INTLTOOL_PERL=$(PERL)
TARGET_MAKE_ENV = PATH=$(BR_PATH)
HOST_CONFIGURE_OPTS = PATH=$(BR_PATH) \
AR="$(HOSTAR)" \
AS="$(HOSTAS)" \
Solve the host tools relying on host libraries problem We build host tools installed in $(HOST_DIR)/usr/bin, and some of them rely on host libraries in $(HOST_DIR)/usr/lib. So when these host tools are executed, they need to find the host libraries, which are not installed in a default location. In c1b6242fdcf2cff7ebf09fec4cc1be58963e8427 we tried to use LD_LIBRARY_PATH when building target packages to solve this problem. Unfortunately, LD_LIBRARY_PATH is not only used to find libraries at run-time, but also at compile time. So it leads the build of some packages, such as icu, to fail. Therefore, in 0d1830b07db4ebfd14e77a258de6fb391e57e960, we reverted the LD_LIBRARY_PATH idea. The other option to solve this problem was to hardcode a RPATH value in the host binaries that would reference the location of host libraries. We added this -Wl,-rpath option to HOST_CFLAGS in 6b939d40f6a29a43277566adc9d4312d49cb3abf. Unfortunately, this caused problems when building binutils, as reported in bug 1789 so this change was reverted in e1a7d916e9eeaa215551740de40c055130d6c073. Then, we tried to use -Wl,-rpath in HOST_LDFLAGS, but it was causing problems with fakeroot not recognizing 'ld' as the GNU linker, since the -Wl,-rpath cannot be understood by 'ld' directly, only by 'gcc'. This commit is a new attempt at using HOST_LDFLAGS, but in this case we modified the definition of HOST_LD to *not* contain HOST_LDFLAGS. LDFLAGS are being set separatly. It solved the fakeroot issue and was tested against nearly 300 packages of Buildroot. For more details on this story, see http://lists.busybox.net/pipermail/buildroot/2010-June/035580.html http://lists.busybox.net/pipermail/buildroot/2010-June/035581.html http://lists.busybox.net/pipermail/buildroot/2010-June/035586.html http://lists.busybox.net/pipermail/buildroot/2010-June/035609.html https://bugs.busybox.net/show_bug.cgi?id=1789 Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2010-06-25 14:15:20 +02:00
LD="$(HOSTLD)" \
NM="$(HOSTNM)" \
CC="$(HOSTCC)" \
GCC="$(HOSTCC)" \
CXX="$(HOSTCXX)" \
CPP="$(HOSTCPP)" \
OBJCOPY="$(HOSTOBJCOPY)" \
RANLIB="$(HOSTRANLIB)" \
CPPFLAGS="$(HOST_CPPFLAGS)" \
CFLAGS="$(HOST_CFLAGS)" \
CXXFLAGS="$(HOST_CXXFLAGS)" \
Solve the host tools relying on host libraries problem We build host tools installed in $(HOST_DIR)/usr/bin, and some of them rely on host libraries in $(HOST_DIR)/usr/lib. So when these host tools are executed, they need to find the host libraries, which are not installed in a default location. In c1b6242fdcf2cff7ebf09fec4cc1be58963e8427 we tried to use LD_LIBRARY_PATH when building target packages to solve this problem. Unfortunately, LD_LIBRARY_PATH is not only used to find libraries at run-time, but also at compile time. So it leads the build of some packages, such as icu, to fail. Therefore, in 0d1830b07db4ebfd14e77a258de6fb391e57e960, we reverted the LD_LIBRARY_PATH idea. The other option to solve this problem was to hardcode a RPATH value in the host binaries that would reference the location of host libraries. We added this -Wl,-rpath option to HOST_CFLAGS in 6b939d40f6a29a43277566adc9d4312d49cb3abf. Unfortunately, this caused problems when building binutils, as reported in bug 1789 so this change was reverted in e1a7d916e9eeaa215551740de40c055130d6c073. Then, we tried to use -Wl,-rpath in HOST_LDFLAGS, but it was causing problems with fakeroot not recognizing 'ld' as the GNU linker, since the -Wl,-rpath cannot be understood by 'ld' directly, only by 'gcc'. This commit is a new attempt at using HOST_LDFLAGS, but in this case we modified the definition of HOST_LD to *not* contain HOST_LDFLAGS. LDFLAGS are being set separatly. It solved the fakeroot issue and was tested against nearly 300 packages of Buildroot. For more details on this story, see http://lists.busybox.net/pipermail/buildroot/2010-June/035580.html http://lists.busybox.net/pipermail/buildroot/2010-June/035581.html http://lists.busybox.net/pipermail/buildroot/2010-June/035586.html http://lists.busybox.net/pipermail/buildroot/2010-June/035609.html https://bugs.busybox.net/show_bug.cgi?id=1789 Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2010-06-25 14:15:20 +02:00
LDFLAGS="$(HOST_LDFLAGS)" \
PKG_CONFIG_ALLOW_SYSTEM_CFLAGS=1 \
PKG_CONFIG_ALLOW_SYSTEM_LIBS=1 \
PKG_CONFIG="$(PKG_CONFIG_HOST_BINARY)" \
PKG_CONFIG_SYSROOT_DIR="/" \
PKG_CONFIG_LIBDIR="$(HOST_DIR)/usr/lib/pkgconfig:$(HOST_DIR)/usr/share/pkgconfig" \
LD_LIBRARY_PATH="$(HOST_DIR)/usr/lib$(if $(LD_LIBRARY_PATH),:$(LD_LIBRARY_PATH))" \
INTLTOOL_PERL=$(PERL)
HOST_MAKE_ENV = PATH=$(BR_PATH) \
LD_LIBRARY_PATH="$(HOST_DIR)/usr/lib$(if $(LD_LIBRARY_PATH),:$(LD_LIBRARY_PATH))" \
PKG_CONFIG="$(PKG_CONFIG_HOST_BINARY)" \
PKG_CONFIG_SYSROOT_DIR="/" \
PKG_CONFIG_LIBDIR="$(HOST_DIR)/usr/lib/pkgconfig"
# This is extra environment we can not export ourselves (eg. because some
# packages use that variable internally, eg. uboot), so we have to
# explicitly pass it to user-supplied external hooks (eg. post-build,
# post-images)
EXTRA_ENV = \
PATH=$(BR_PATH) \
BR2_DL_DIR=$(BR2_DL_DIR) \
BUILD_DIR=$(BUILD_DIR)
################################################################################
# settings we need to pass to configure
# does unaligned access trap?
BR2_AC_CV_TRAP_CHECK = ac_cv_lbl_unaligned_fail=yes
ifeq ($(BR2_i386),y)
BR2_AC_CV_TRAP_CHECK = ac_cv_lbl_unaligned_fail=no
endif
ifeq ($(BR2_x86_64),y)
BR2_AC_CV_TRAP_CHECK = ac_cv_lbl_unaligned_fail=no
endif
ifeq ($(BR2_m68k),y)
BR2_AC_CV_TRAP_CHECK = ac_cv_lbl_unaligned_fail=no
endif
ifeq ($(BR2_powerpc)$(BR2_powerpc64)$(BR2_powerpc64le),y)
BR2_AC_CV_TRAP_CHECK = ac_cv_lbl_unaligned_fail=no
endif
ifeq ($(BR2_ENDIAN),"BIG")
BR2_AC_CV_C_BIGENDIAN = ac_cv_c_bigendian=yes
else
BR2_AC_CV_C_BIGENDIAN = ac_cv_c_bigendian=no
endif
TARGET_CONFIGURE_ARGS = \
$(BR2_AC_CV_TRAP_CHECK) \
ac_cv_func_mmap_fixed_mapped=yes \
ac_cv_func_memcmp_working=yes \
Adding Central config.cache options The following changes allow for use of a central configure cache file. This speeds up configuration of packages. Its use is configurable at the top level (BR2_CONFIG_CACHE - default n). Old style makefiles can use it if they use the following MACRO in makefiles: $(AUTO_CONFIGURE_TARGET) see my change to directfb.mk. New style Autotools.in will use it if you set the global option. However you can enable the global option and on a per package overrule it by doing the following: $(PKGNAME)_USE_CONFIG_CACHE = NO see fontconfig.mk for an example of this. Finally I have removed a few config variable settings which indicated no CXX compiler as this is wrong and breaks the build when using this central cache. Config.in | 8 ++++++++ package/Makefile.autotools.in | 5 ++++- package/Makefile.in | 28 +++++++++++++++++++++++++++- package/atk/atk.mk | 2 +- package/directfb/directfb.mk | 7 +------ package/fontconfig/fontconfig.mk | 3 +++ package/libglib2/libglib2.mk | 2 +- package/libgtk2/libgtk2.mk | 1 - 8 files changed, 45 insertions(+), 11 deletions(-) I would appreciate feedback on this change (I have been testing for 2-3 weeks) But I can never test all cases! If you enable the BR2_CONFIG_CACHE option some Makefile.autotools.in based packages may now break - I cannot build them all. In this case you may need to remove config options that are being hardcoded all over the place (like gtk saying we have 2 CXX compiler) or disable the use of CONFIG CACHE file like I have done in fontconfig. I can build all packages required to get WebKit on DirectFB up and running and it runs fine. I will try to resolve any issues this creates as fast as I can. Signed-off-by: Daniel Laird <daniel.j.laird@nxp.com>
2008-11-28 15:20:47 +01:00
ac_cv_have_decl_malloc=yes \
gl_cv_func_malloc_0_nonnull=yes \
ac_cv_func_malloc_0_nonnull=yes \
ac_cv_func_calloc_0_nonnull=yes \
ac_cv_func_realloc_0_nonnull=yes \
lt_cv_sys_lib_search_path_spec="" \
$(BR2_AC_CV_C_BIGENDIAN)
################################################################################
ifeq ($(BR2_ENABLE_LOCALE),y)
DISABLE_NLS :=
else
DISABLE_NLS :=--disable-nls
endif
ifneq ($(BR2_LARGEFILE),y)
DISABLE_LARGEFILE = --disable-largefile
endif
ifeq ($(BR2_INET_IPV6),y)
DISABLE_IPV6 = --enable-ipv6
else
DISABLE_IPV6 = --disable-ipv6
endif
ifneq ($(BR2_INSTALL_LIBSTDCPP),y)
TARGET_CONFIGURE_OPTS += CXX=false
endif
2008-03-11 19:15:30 +01:00
ifeq ($(BR2_ENABLE_DEBUG),y)
ENABLE_DEBUG := --enable-debug
2008-03-11 19:15:30 +01:00
else
ENABLE_DEBUG := --disable-debug
2008-03-11 19:15:30 +01:00
endif
ifeq ($(BR2_STATIC_LIBS),y)
SHARED_STATIC_LIBS_OPTS = --enable-static --disable-shared
TARGET_CFLAGS += -static
TARGET_CXXFLAGS += -static
TARGET_LDFLAGS += -static
else ifeq ($(BR2_SHARED_LIBS),y)
SHARED_STATIC_LIBS_OPTS = --disable-static --enable-shared
else ifeq ($(BR2_SHARED_STATIC_LIBS),y)
SHARED_STATIC_LIBS_OPTS = --enable-static --enable-shared
endif
ifeq ($(BR2_COMPILER_PARANOID_UNSAFE_PATH),y)
export BR_COMPILER_PARANOID_UNSAFE_PATH=enabled
endif
include package/pkg-download.mk
include package/pkg-autotools.mk
include package/pkg-cmake.mk
include package/pkg-luarocks.mk
include package/pkg-perl.mk
include package/pkg-python.mk
include package/pkg-virtual.mk
include package/pkg-generic.mk
infra: introduce a kconfig-package infrastructure There are several packages that have a configuration file managed by kconfig: uclibc, busybox, linux and barebox. All these packages need some make targets to handle the kconfig specificities: creating a configuration (menuconfig, ...) and saving it back (update-config, ...) These targets should be the same for each of these packages, but unfortunately they are not. Especially with respect to saving back the configuration to the original config file, there are many differences. A previous set of patches fixed these targets for the uclibc package. This patch extracts these targets into a common kconfig-package infrastructure, with the goals of: - aligning the behavior of all kconfig-based packages - removing code duplication In order to use this infrastructure, a package should at a minimum specify FOO_KCONFIG_FILE and eval the kconfig-package macro. The supported configuration editors can be set with FOO_KCONFIG_EDITORS and defaults to menuconfig only. Additionally, a package can specify FOO_KCONFIG_OPT for extra options to pass to the invocation of the kconfig editors, and FOO_KCONFIG_FIXUP_CMDS for a list of shell commands used to fixup the .config file after a configuration has been created/edited. Signed-off-by: Thomas De Schampheleire <thomas.de.schampheleire@gmail.com> [yann.morin.1998@free.fr: add missing 4th argument when calling to inner-kconfig-package (namely, 'target'] Signed-off-by: "Yann E. MORIN" <yann.morin.1998@free.fr> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
2014-08-03 17:32:40 +02:00
include package/pkg-kconfig.mk