genode/repos/dde_linux
Sebastian Sumpf 191cfd2c53 usb_drv: Add Natural Ergonomic 4000 keyboard support
fixes  #1878
2016-02-05 17:06:26 +01:00
..
include Introduce 'spec' subdirectories to outline aspects 2015-09-16 13:58:50 +02:00
lib usb_drv: Add Natural Ergonomic 4000 keyboard support 2016-02-05 17:06:26 +01:00
patches intel_fb: remove x201 workaround 2016-01-13 14:58:01 +01:00
ports usb_drv: Add Natural Ergonomic 4000 keyboard support 2016-02-05 17:06:26 +01:00
run usb_drv: change Usb session and raw driver 2016-01-27 16:15:34 +01:00
src usb_drv: Add Natural Ergonomic 4000 keyboard support 2016-02-05 17:06:26 +01:00
Makefile Enable hash checks for ports mechanism 2014-05-27 13:45:03 +02:00
README usb_drv: change Usb session and raw driver 2016-01-27 16:15:34 +01:00
intel_fb.list dde_linux: KMS-based Intel framebuffer driver (II) 2015-11-29 18:17:07 +01:00
lxip.list lxip: Add loopback device 2014-11-12 14:44:17 +01:00
usb.list usb_drv: Add Natural Ergonomic 4000 keyboard support 2016-02-05 17:06:26 +01:00
wifi.list wifi_drv: Port of the Linux wireless stack 2014-11-28 12:02:36 +01:00

README

Device drivers ported from the Linux kernel

USB
###

Controller configuration
~~~~~~~~~~~~~~~~~~~~~~~~

The driver can be started using different or all USB controller types a platform
offers (USB 1.0/2.0/3.0). Note that not all controllers are supported by all
platforms.  Controllers can be enabled as attribute in the config node of the
driver.  Supported attributes are: 'uhci', 'ehci', and 'xhci'.


Configuration snippet to enable UHCI and EHCI

! <config uhci="yes" ehci="yes">

HID
~~~

Supports keyboard and mouse. A run script can be found under 'run/usb_hid.run'.

Configuration snippet:

!<start name="usb_drv">
!  <resource name="RAM" quantum="3M"/>
!  <provides><service name="Input"/></provides>
!  <config uhci="yes" ehci="yes" xhci="yes">
!    <hid/>
!  </config>
!</start>

Note: It has been observed that certain 1.0 versions of Qemu do not generate
mouse interrupts. The mouse driver should work correctly on Qemu 1.0.93 and
above.

HID - Touchscreen support
~~~~~~~~~~~~~~~~~~~~~~~~~

Touchscreen absolute coordinates must be calibrated (e.g. re-calculated) to
screen absolute coordinates. The screen resolution is not determined
automatically by the USB driver, but can be configured as sub node of the
hid xml tag:

!...
!<hid>
!  <touchscreen width="1024" height="768" multitouch="no"/>
!<hid/>
!...

If a touchscreen is multi-touch-capable than the multitouch attribute gears
which type of Genode input events are generated. If set to  'no' (default)
than absolute events are generated and no multitouch events. If set to 'yes'
solely multitouch events are generated.

Storage
~~~~~~~

Currently supports one USB storage device. Hot plugging has not been tested. A
run script can be found under 'run/usb_storage.run'.

Configuration snippet:

!<start name="usb_drv">
!  <resource name="RAM" quantum="2M"/>
!  <provides> <service name="Block"/> </provides>
!  <config><storage /></config>
!</start uhci="yes">


Network (Nic)
~~~~~~~~~~~~~

Configuration snippet:

!<start name="usb_drv">
!  <resource name="RAM" quantum="3M"/>
!  <provides>
!    <service name="Nic"/>
!    <service name="Input"/>
!  </provides>
!  <config ehci="yes" xhci="yes">
!    <nic mac="2e:60:90:0c:4e:01" />
!    <hid/>
!  </config>
!</start>

Please observe that this setup starts the HID and Nic service at the same time.
Also there is the 'mac' attribute where one can specify the hardware address of
the network interface. This is necessary in case the EEPROM of the network card
cannot be accessed via the host controller making it impossible to retrieve the
devices hardware address. If this is the case and no 'mac' attribute is given a
fallback address will be assigned to the network device. Note that the fallback
address will always be the same.

LXIP
####

LXIP is a port of the Linux TCP/IP stack to Genode. It is build as a shared
library named 'lxip.lib.so'. The IP stack can be interfaced using Genode's
version of 'libc' by linking your application to 'lxip_libc' plugin in your
'target.mk' file.

WIFI
####

The wifi_drv component is a port of the Linux mac802.11 stack, including the
iwlwifi driver as well as libnl and wpa_supplicant, to Genode.

Configuration snippet:

!<start name="wifi_drv">
!  <resource name="RAM" quantum="32M"/>
!  <provides><service name="Nic"/></provides>
!  <config>
!    <libc stdout="/dev/log" stderr="/dev/log" rtc="/dev/rtc">
!      <vfs>
!        <dir name="dev"> <log/> <rtc/>
!           <jitterentropy name="random"/>
!           <jitterentropy name="urandom"/>
!        </dir>
!        <inline name="wpa_supplicant.conf">
!network={
!  id_str="foobar"
!  ssid="foobar"
!  key_mgmt=WPA-PSK
!  psk="foobarfoobar"
!}
!        </inline>
!      </vfs>
!    </libc>
!  </config>
!  <route>
!    <service name="Rtc"> <any-child /> </service>
!    <any-service> <parent/> <any-child /> </any-service>
!  </route>
!</start

The wifi_drv creates two distinct reports to communicate its state and
information about the wireless infrastructure to other components. The
first one is a list of all available accesspoints. The following examplary
report shows its structure:

!<wlan_accesspoints>
!  <accesspoint ssid="skynet" bssid="00:01:02:03:04:05" quality="40"/>
!  <accesspoint ssid="foobar" bssid="01:02:03:04:05:06" quality="70" protection="WPA-PSK"/>
!  <accesspoint ssid="foobar" bssid="01:02:03:04:05:07" quality="10" protection="WPA-PSK"/>
!</wlan_accesspoints>

Each accesspoint node has attributes that contain the SSID and the BSSID
of the accesspoint as well as the link quality (signal strength). These
attributes are mandatory. If the network is protected, the node will also
have an attribute describing the type of protection in addition.

The second report provides information about the state of the connection
to the currently connected accesspoint:

!<wlan_state>
!  <accesspoint ssid="foobar" bssid="01:02:03:04:05:06" quality="70" protection="WPA-PSK" state="connected"/>
!</wlan_state>

Valid state values are 'connected', 'disconnected', 'connecting' and
'disconnecting'.

In return, the wifi_drv get its configuration via a ROM module. This ROM
module contains the configuration for the selected accesspoint.
To connect to an open accesspoint a configuration like the following is used:

!<selected_accesspoint ssid="foobar"/>

If the network is protected by, e.g., WPA/WPA2, the protection type as well
as the the pre-shared key have to be specified:

!<selected_accesspoint ssid="securefoobar" protection="WPA-PSK" psk="foobar123!"/>

If a network consists of several different access points and a particular one
should be used it can be selected by specifing its BSSID in a 'bssid'
attribute.

Of all attributes only the 'ssid' attribute is mandatory, all others are
optional and should only be used when needed.

To disconnect from an accesspoint, a empty configuration is sent:

!<selected_accesspoint/>

By subscribing to both reports and providing the required ROM module, a
component can control the wireless driver. An example therefore is the Qt
based component in 'src/app/qt_wifi_connect'.

Currently only WPA/WPA2 protection using a pre-shared key is supported.

RAW
~~~

Allows raw access to USB devices via the 'Usb' session interface.

Configuration snippet:

!<start name="usb_drv">
!  <resource name="RAM" quantum="8M"/>
!  <provides><service name="Usb"/></provides>
!  <config uhci="yes" ehci="yes" xhci="yes">
!    <raw>
!        <report devices="yes"/>
!    </raw>
!  </config>
!</start>

The optional 'devices' report lists the connected devices and gets updated
when devices are added or removed.

Example report:

!<devices>
!  <device label="usb-1-7" vendor_id="0x1f75" product_id="0x0917" bus="0x0001" dev="0x0007"/>
!  <device label="usb-1-6" vendor_id="0x13fe" product_id="0x5200" bus="0x0001" dev="0x0006"/>
!  <device label="usb-1-4" vendor_id="0x17ef" product_id="0x4816" bus="0x0001" dev="0x0004"/>
!  <device label="usb-1-3" vendor_id="0x0a5c" product_id="0x217f" bus="0x0001" dev="0x0003"/>
!  <device label="usb-2-2" vendor_id="0x8087" product_id="0x0020" bus="0x0002" dev="0x0002"/>
!  <device label="usb-1-2" vendor_id="0x8087" product_id="0x0020" bus="0x0001" dev="0x0002"/>
!  <device label="usb-2-1" vendor_id="0x1d6b" product_id="0x0002" bus="0x0002" dev="0x0001"/>
!  <device label="usb-1-1" vendor_id="0x1d6b" product_id="0x0002" bus="0x0001" dev="0x0001"/>
!</devices>

For every device a unique identifier is generated that is used to access the
USB device. Only devices that have a valid policy configured at the USB driver
can be accessed by a client. The following configuration allows 'comp1' to
access the device 'usb-1-6':

!<start name="usb_drv">
!  <resource name="RAM" quantum="8M"/>
!  <provides><service name="Usb"/></provides>
!  <config uhci="yes" ehci="yes" xhci="yes">
!    <raw>
!        <report devices="yes"/>
!        <policy label="comp1 -> usb-1-6" vendor_id="0x13fe" product_id="0x5200" bus="0x0001" dev="0x0006"/>
!    </raw>
!  </config>
!</start>

In addition to the mandatory 'label' attribute the policy node also
contains optional attribute tuples of which at least one has to be present.
The 'vendor_id' and 'product_id' tuple selects a device regardless of its
location on the USB bus and is mostly used in static configurations. The
'bus' and 'dev' tuple selects a specific device via its bus locations and
device address. It is mostly used in dynamic configurations because the device
address is not fixed and may change every time the same device is plugged in.

The configuration of the USB driver can be changed at runtime to satisfy
dynamic configurations or rather policies when using the 'Usb' session
interface.