genode/os/src/server/trace_fs/chunk.h
Josef Söntgen bdec3dd668 os: initial version of trace_fs
The trace_fs server provides access to a Trace_session by using a
File_system_session as frontend.

Each trace subject is represented by a directory ('thread_name.subject')
that contains specific files ('active', 'cleanup', 'enable', 'events',
'buffer_size' and 'policy'), which are used to control the tracing
process of the thread as well as storing the content of its trace
buffer.

The tracing of a thread is only activated if there is a valid policy
installed and the intend to trace the subject was made clear by writing
'1' to the 'enable' file.

The tracing of a thread may be deactived by writing a '0' to the
'enable' file.

A policy may be changed by overwriting the currently used one. In this
case the old policy is replaced by the new policy and is automatically
utilize.

Writing a value to the 'buffer_size' file changes the appointed size of
the trace buffer. This value is only evaluted by reactivating the
tracing process.

The content of the trace buffer may be accessed by reading from the
'events' file. Throughout all tracing session new trace events are
appended to this file.

Nodes of UNTRACED subjects are kept as long as they do not change their
tracing state to DEAD. In this case all nodes are removed from the
file system. Subjects that were traced before and are now UNTRACED will
only be removed by writing '1' to the 'cleanup' file - even if they
are DEAD by now.

To use the trace_fs a config similar to the following may be used:

! <start name="trace_fs">
! 	<resource name="RAM" quantum="128M"/>
! 	<provides><service name="File_system"/></provides>
! 	<config>
! 		<policy label="noux -> trace" interval="1000" subject_limit="512" trace_quota="64M" />
! 	</config>
! </start>

'interval' sets the periode in which the Trace_session is polled. The
time is given in milliseconds.
'subject_limit' speficies how many trace subject should by acquired at
most when the Trace_session is polled.
'trace_quota' is the amount of quota the trace_fs should use for the
Trace_session connection. The remaing amount of RAM quota will be used
for the actual nodes of the file system and the 'policy' as well as the
'events' files.
In addiition there are 'buffer_size' and 'buffer_size_limit' that define
the initial and the upper limit of the size of a trace buffer.
Tracing of parent processes or rather threads may be enabled by setting
'parent_levels' to a value greater than '0' (though this attribute is
available, the trace session component within core still lacks support
for it).

A ready-to-use runscript can by found in 'ports/run/noux_trace_fs.run'.

Fixes #1049.
2014-02-25 14:58:02 +01:00

442 lines
11 KiB
C++

/*
* \brief Data structure for storing sparse files in RAM
* \author Norman Feske
* \date 2012-04-18
*/
/*
* Copyright (C) 2012-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _CHUNK_H_
#define _CHUNK_H_
/* Genode includes */
#include <util/noncopyable.h>
#include <base/allocator.h>
#include <util/string.h>
#include <file_system_session/file_system_session.h>
namespace File_system {
using namespace Genode;
/**
* Common base class of both 'Chunk' and 'Chunk_index'
*/
class Chunk_base : Noncopyable
{
public:
class Index_out_of_range { };
protected:
seek_off_t const _base_offset;
size_t _num_entries; /* corresponds to last used entry */
/**
* Test if specified range lies within the chunk
*/
void assert_valid_range(seek_off_t start, size_t len,
file_size_t chunk_size) const
{
if (is_zero()) return;
if (start < _base_offset)
throw Index_out_of_range();
if (start + len > _base_offset + chunk_size)
throw Index_out_of_range();
}
Chunk_base(seek_off_t base_offset)
: _base_offset(base_offset), _num_entries(0) { }
/**
* Construct zero chunk
*
* A zero chunk is a chunk that cannot be written to. When reading
* from it, it returns zeros. Because there is a single zero chunk
* for each chunk type, the base offset is meaningless. We use a
* base offset of ~0 as marker to identify zero chunks.
*/
Chunk_base() : _base_offset(~0L), _num_entries(0) { }
public:
/**
* Return absolute base offset of chunk in bytes
*/
seek_off_t base_offset() const { return _base_offset; }
/**
* Return true if chunk is a read-only zero chunk
*/
bool is_zero() const { return _base_offset == (seek_off_t)(~0L); }
/**
* Return true if chunk has no allocated sub chunks
*/
bool empty() const { return _num_entries == 0; }
};
/**
* Chunk of bytes used as leaf in hierarchy of chunk indices
*/
template <unsigned CHUNK_SIZE>
class Chunk : public Chunk_base
{
private:
char _data[CHUNK_SIZE];
public:
enum { SIZE = CHUNK_SIZE };
/**
* Construct byte chunk
*
* \param base_offset absolute offset of chunk in bytes
*
* The first argument is unused. Its mere purpose is to make the
* signature of the constructor compatible to the constructor
* of 'Chunk_index'.
*/
Chunk(Allocator &, seek_off_t base_offset)
:
Chunk_base(base_offset)
{
memset(_data, 0, CHUNK_SIZE);
}
/**
* Construct zero chunk
*/
Chunk() { }
/**
* Return number of used entries
*
* The returned value corresponds to the index of the last used
* entry + 1. It does not correlate to the number of actually
* allocated entries (there may be ranges of zero blocks).
*/
file_size_t used_size() const { return _num_entries; }
void write(char const *src, size_t len, seek_off_t seek_offset)
{
assert_valid_range(seek_offset, len, SIZE);
/* offset relative to this chunk */
seek_off_t const local_offset = seek_offset - base_offset();
memcpy(&_data[local_offset], src, len);
_num_entries = max(_num_entries, local_offset + len);
}
void read(char *dst, size_t len, seek_off_t seek_offset) const
{
assert_valid_range(seek_offset, len, SIZE);
memcpy(dst, &_data[seek_offset - base_offset()], len);
}
void truncate(file_size_t size)
{
assert_valid_range(size, 0, SIZE);
/*
* Offset of the first free position (relative to the beginning
* this chunk).
*/
seek_off_t const local_offset = size - base_offset();
if (local_offset >= _num_entries)
return;
memset(&_data[local_offset], 0, _num_entries - local_offset);
_num_entries = local_offset;
}
};
template <unsigned NUM_ENTRIES, typename ENTRY_TYPE>
class Chunk_index : public Chunk_base
{
public:
typedef ENTRY_TYPE Entry;
enum { ENTRY_SIZE = ENTRY_TYPE::SIZE,
SIZE = ENTRY_SIZE*NUM_ENTRIES };
private:
Allocator &_alloc;
Entry * _entries[NUM_ENTRIES];
/**
* Return instance of a zero sub chunk
*/
static Entry const &_zero_chunk()
{
static Entry zero_chunk;
return zero_chunk;
}
/**
* Return sub chunk at given index
*
* If there is no sub chunk at the specified index, this function
* transparently allocates one. Hence, the returned sub chunk
* is ready to be written to.
*/
Entry &_entry_for_writing(unsigned index)
{
if (index >= NUM_ENTRIES)
throw Index_out_of_range();
if (_entries[index])
return *_entries[index];
seek_off_t entry_offset = base_offset() + index*ENTRY_SIZE;
_entries[index] = new (&_alloc) Entry(_alloc, entry_offset);
_num_entries = max(_num_entries, index + 1);
return *_entries[index];
}
/**
* Return sub chunk at given index (for reading only)
*
* This function transparently provides a zero sub chunk for any
* index that is not populated by a real chunk.
*/
Entry const &_entry_for_reading(unsigned index) const
{
if (index >= NUM_ENTRIES)
throw Index_out_of_range();
if (_entries[index])
return *_entries[index];
return _zero_chunk();
}
/**
* Return index of entry located at specified byte offset
*
* The caller of this function must make sure that the offset
* parameter is within the bounds of the chunk.
*/
unsigned _index_by_offset(seek_off_t offset) const
{
return (offset - base_offset()) / ENTRY_SIZE;
}
/**
* Apply operation 'func' to a range of entries
*/
template <typename THIS, typename DATA, typename FUNC>
static void _range_op(THIS &obj, DATA *data, size_t len,
seek_off_t seek_offset, FUNC const &func)
{
/*
* Depending on whether this function is called for reading
* (const function) or writing (non-const function), the
* operand type is const or non-const Entry. The correct type
* is embedded as a trait in the 'FUNC' functor type.
*/
typedef typename FUNC::Entry Const_qualified_entry;
obj.assert_valid_range(seek_offset, len, SIZE);
while (len > 0) {
unsigned const index = obj._index_by_offset(seek_offset);
Const_qualified_entry &entry = FUNC::lookup(obj, index);
/*
* Calculate byte offset relative to the chunk
*
* We cannot use 'entry.base_offset()' for this calculation
* because in the const case, the lookup might return a
* zero chunk, which has no defined base offset. Therefore,
* we calculate the base offset via index*ENTRY_SIZE.
*/
seek_off_t const local_seek_offset =
seek_offset - obj.base_offset() - index*ENTRY_SIZE;
/* available capacity at 'entry' starting at seek offset */
seek_off_t const capacity = ENTRY_SIZE - local_seek_offset;
seek_off_t const curr_len = min(len, capacity);
/* apply functor (read or write) to entry */
func(entry, data, curr_len, seek_offset);
/* advance to next entry */
len -= curr_len;
data += curr_len;
seek_offset += curr_len;
}
}
struct Write_func
{
typedef ENTRY_TYPE Entry;
static Entry &lookup(Chunk_index &chunk, unsigned i) {
return chunk._entry_for_writing(i); }
void operator () (Entry &entry, char const *src, size_t len,
seek_off_t seek_offset) const
{
entry.write(src, len, seek_offset);
}
};
struct Read_func
{
typedef ENTRY_TYPE const Entry;
static Entry &lookup(Chunk_index const &chunk, unsigned i) {
return chunk._entry_for_reading(i); }
void operator () (Entry &entry, char *dst, size_t len,
seek_off_t seek_offset) const
{
if (entry.is_zero())
memset(dst, 0, len);
else
entry.read(dst, len, seek_offset);
}
};
void _init_entries()
{
for (unsigned i = 0; i < NUM_ENTRIES; i++)
_entries[i] = 0;
}
void _destroy_entry(unsigned i)
{
if (_entries[i] && (i < _num_entries)) {
destroy(&_alloc, _entries[i]);
_entries[i] = 0;
}
}
public:
/**
* Constructor
*
* \param alloc allocator to use for allocating sub-chunk
* indices and chunks
* \param base_offset absolute offset of the chunk in bytes
*/
Chunk_index(Allocator &alloc, seek_off_t base_offset)
: Chunk_base(base_offset), _alloc(alloc) { _init_entries(); }
/**
* Construct zero chunk
*/
Chunk_index() : _alloc(*(Allocator *)0) { }
/**
* Destructor
*/
~Chunk_index()
{
for (unsigned i = 0; i < NUM_ENTRIES; i++)
_destroy_entry(i);
}
/**
* Return size of chunk in bytes
*
* The returned value corresponds to the position after the highest
* offset that was written to.
*/
file_size_t used_size() const
{
if (_num_entries == 0)
return 0;
/* size of entries that lie completely within the used range */
file_size_t const size_whole_entries = ENTRY_SIZE*(_num_entries - 1);
Entry *last_entry = _entries[_num_entries - 1];
if (!last_entry)
return size_whole_entries;
return size_whole_entries + last_entry->used_size();
}
/**
* Write data to chunk
*/
void write(char const *src, size_t len, seek_off_t seek_offset)
{
_range_op(*this, src, len, seek_offset, Write_func());
}
/**
* Read data from chunk
*/
void read(char *dst, size_t len, seek_off_t seek_offset) const
{
_range_op(*this, dst, len, seek_offset, Read_func());
}
/**
* Truncate chunk to specified size in bytes
*
* This function can be used to shrink a chunk only. Specifying a
* 'size' larger than 'used_size' has no effect. The value returned
* by 'used_size' refers always to the position of the last byte
* written to the chunk.
*/
void truncate(file_size_t size)
{
unsigned const trunc_index = _index_by_offset(size);
if (trunc_index >= _num_entries)
return;
for (unsigned i = trunc_index + 1; i < _num_entries; i++)
_destroy_entry(i);
/* traverse into sub chunks */
if (_entries[trunc_index])
_entries[trunc_index]->truncate(size);
_num_entries = trunc_index + 1;
/*
* If the truncated at a chunk boundary, we can release the
* empty trailing chunk at 'trunc_index'.
*/
if (_entries[trunc_index] && _entries[trunc_index]->empty()) {
_destroy_entry(trunc_index);
_num_entries--;
}
}
};
};
#endif /* _CHUNK_H_ */