genode/repos/base-linux/src/lib/base/child_process.cc
Norman Feske a99989af40 Separation of thread operations from CPU session
This patch moves the thread operations from the 'Cpu_session'
to the 'Cpu_thread' interface.

A noteworthy semantic change is the meaning of the former
'exception_handler' function, which used to define both, the default
exception handler or a thread-specific signal handler. Now, the
'Cpu_session::exception_sigh' function defines the CPU-session-wide
default handler whereas the 'Cpu_thread::exception_sigh' function
defines the thread-specific one.

To retain the ability to create 'Child' objects without invoking a
capability, the child's initial thread must be created outside the
'Child::Process'. It is now represented by the 'Child::Initial_thread',
which is passed as argument to the 'Child' constructor.

Fixes #1939
2016-05-23 15:52:39 +02:00

117 lines
3.2 KiB
C++

/*
* \brief Implementation of process creation for Linux
* \author Norman Feske
* \date 2006-07-06
*/
/*
* Copyright (C) 2006-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/env.h>
#include <base/child.h>
#include <base/printf.h>
#include <linux_native_pd/client.h>
/* base-internal includes */
#include <linux_syscalls.h>
#include <base/internal/elf.h>
using namespace Genode;
/*
* Register main thread at core
*
* At this point in time, we do not yet know the TID and PID of the new
* thread. Those information will be provided to core by the constructor of
* the 'Platform_env' of the new process.
*/
Child::Initial_thread::Initial_thread(Cpu_session &cpu,
Pd_session_capability pd,
Name const &name)
:
_cpu(cpu),
_cap(cpu.create_thread(pd, name, Affinity::Location(), Cpu_session::Weight()))
{ }
Child::Initial_thread::~Initial_thread() { }
void Child::Initial_thread::start(addr_t) { }
/*
* On Linux, the ELF loading is performed by the kernel
*/
Child::Process::Loaded_executable::Loaded_executable(Dataspace_capability,
Dataspace_capability,
Ram_session &,
Region_map &,
Region_map &,
Parent_capability) { }
Child::Process::Process(Dataspace_capability elf_ds,
Dataspace_capability ldso_ds,
Pd_session_capability pd_cap,
Pd_session &pd,
Ram_session &ram,
Initial_thread_base &initial_thread,
Region_map &local_rm,
Region_map &remote_rm,
Parent_capability parent_cap)
:
initial_thread(initial_thread),
loaded_executable(elf_ds, ldso_ds, ram, local_rm, remote_rm, parent_cap)
{
/* skip loading when called during fork */
if (!elf_ds.valid())
return;
/* attach ELF locally */
addr_t elf_addr;
try { elf_addr = local_rm.attach(elf_ds); }
catch (Region_map::Attach_failed) {
PERR("local attach of ELF executable failed"); throw; }
/* setup ELF object and read program entry pointer */
Elf_binary elf(elf_addr);
if (!elf.valid())
throw Invalid_executable();
bool const dynamically_linked = elf.is_dynamically_linked();
local_rm.detach(elf_addr);
/*
* If the specified executable is a dynamically linked program, we load
* the dynamic linker instead.
*/
if (dynamically_linked) {
if (!ldso_ds.valid()) {
PERR("attempt to start dynamic executable without dynamic linker");
throw Missing_dynamic_linker();
}
elf_ds = ldso_ds;
}
pd.assign_parent(parent_cap);
Linux_native_pd_client
lx_pd(static_cap_cast<Linux_native_pd>(pd.native_pd()));
lx_pd.start(elf_ds);
}
Child::Process::~Process() { }