genode/repos/base-okl4/src/core/platform.cc

328 lines
9.9 KiB
C++

/*
* \brief OKL4 platform interface implementation
* \author Norman Feske
* \date 2009-03-31
*/
/*
* Copyright (C) 2009-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/printf.h>
#include <base/allocator_avl.h>
#include <base/sleep.h>
#include <util/misc_math.h>
/* base-internal includes */
#include <base/internal/crt0.h>
#include <base/internal/stack_area.h>
/* core includes */
#include <core_parent.h>
#include <platform.h>
#include <platform_thread.h>
#include <platform_pd.h>
#include <map_local.h>
/* OKL4 includes */
namespace Okl4 {
#include <l4/ipc.h>
#include <l4/schedule.h>
}
using namespace Genode;
static const bool verbose_boot_info = false;
enum { MAX_BOOT_MODULES = 64 };
enum { MAX_BOOT_MODULE_NAME_LEN = 32 };
static struct
{
char name[MAX_BOOT_MODULE_NAME_LEN];
addr_t base;
size_t size;
} boot_modules[MAX_BOOT_MODULES];
static int num_boot_module_memsects;
static int num_boot_module_objects;
/****************************************
** Support for core memory management **
****************************************/
bool Mapped_mem_allocator::_map_local(addr_t virt_addr, addr_t phys_addr,
unsigned size) {
return map_local(phys_addr, virt_addr, size / get_page_size()); }
bool Mapped_mem_allocator::_unmap_local(addr_t virt_addr, unsigned size) {
return unmap_local(virt_addr, size / get_page_size()); }
/**********************
** Boot-info parser **
**********************/
int Platform::bi_init_mem(Okl4::uintptr_t virt_base, Okl4::uintptr_t virt_end,
Okl4::uintptr_t phys_base, Okl4::uintptr_t phys_end,
const Okl4::bi_user_data_t *data)
{
if (verbose_boot_info)
printf("init_mem: virt=[%08lx,%08lx), phys=[%08lx,%08lx)\n",
virt_base, virt_end, phys_base, phys_end);
Platform *p = (Platform *)data->user_data;
p->_core_mem_alloc.phys_alloc()->add_range(phys_base, phys_end - phys_base + 1);
p->_core_mem_alloc.virt_alloc()->add_range(virt_base, virt_end - virt_base + 1);
return 0;
}
int Platform::bi_add_virt_mem(Okl4::bi_name_t pool, Okl4::uintptr_t base,
Okl4::uintptr_t end, const Okl4::bi_user_data_t *data)
{
if (verbose_boot_info)
printf("add_virt_mem: pool=%d region=[0x%08lx,0x%08lx], %ld pages\n",
pool, base, end, (end - base + 1)/4096);
/* prevent first page from being added to core memory */
if (base < get_page_size() || end < get_page_size())
return 0;
Platform *p = (Platform *)data->user_data;
p->_core_mem_alloc.virt_alloc()->add_range(base, end - base + 1);
return 0;
}
int Platform::bi_add_phys_mem(Okl4::bi_name_t pool, Okl4::uintptr_t base,
Okl4::uintptr_t end, const Okl4::bi_user_data_t *data)
{
if (verbose_boot_info)
printf("add_phys_mem: pool=%d region=[0x%08lx,0x%08lx], %ld pages\n",
pool, base, end, (end - base + 1)/4096);
if (pool == 2) {
Platform *p = (Platform *)data->user_data;
p->_core_mem_alloc.phys_alloc()->add_range(base, end - base + 1);
}
return 0;
}
int Platform::bi_export_object(Okl4::bi_name_t pd, Okl4::bi_name_t obj,
Okl4::bi_export_type_t export_type, char *key,
Okl4::size_t key_len, const Okl4::bi_user_data_t * data)
{
if (verbose_boot_info)
printf("export_object: pd=%d obj=%d type=%d key=\"%s\"\n",
pd, obj, export_type, key);
/*
* We walk the boot info only once and collect all memory section
* objects. Each time we detect a memory section outside of roottask
* (PD 0), we increment the boot module index.
*/
/* reset module index (roottask objects appear before other pd's objects) */
if (pd == 0) num_boot_module_objects = 0;
if (export_type != Okl4::BI_EXPORT_MEMSECTION_CAP)
return 0;
if (num_boot_module_objects >= MAX_BOOT_MODULES) {
PERR("Maximum number of boot modules exceeded");
return -1;
}
/* copy name from object key */
key_len = min((int)key_len, MAX_BOOT_MODULE_NAME_LEN - 1);
for (unsigned i = 0; i < key_len; i++) {
/* convert letter to lower-case */
char c = key[i];
if (c >= 'A' && c <= 'Z')
c -= 'A' - 'a';
boot_modules[num_boot_module_objects].name[i] = c;
}
/* null-terminate string */
boot_modules[num_boot_module_objects].name[key_len] = 0;
num_boot_module_objects++;
return 0;
}
Okl4::bi_name_t Platform::bi_new_ms(Okl4::bi_name_t owner,
Okl4::uintptr_t base, Okl4::uintptr_t size,
Okl4::uintptr_t flags, Okl4::uintptr_t attr,
Okl4::bi_name_t physpool, Okl4::bi_name_t virtpool,
Okl4::bi_name_t zone, const Okl4::bi_user_data_t *data)
{
if (verbose_boot_info)
printf("new_ms: owner=%d region=[%lx,%lx), flags=%lx, attr=%lx, physpool=%d, virtpool=%d, zone=%d\n",
owner, base, base + size - 1, flags, attr, physpool, virtpool, zone);
/* reset module index (see comment in 'bi_export_object') */
if (owner == 0) num_boot_module_memsects = 0;
/* ignore memory pools other than pool 3 (this is just a heuristic) */
if (virtpool != 3) return 0;
if (num_boot_module_memsects >= MAX_BOOT_MODULES) {
PERR("Maximum number of boot modules exceeded");
return -1;
}
boot_modules[num_boot_module_memsects].base = base;
boot_modules[num_boot_module_memsects].size = size;
num_boot_module_memsects++;
return 0;
}
static char init_slab_block_rom[get_page_size()];
static char init_slab_block_thread[get_page_size()];
Platform::Platform() :
_io_mem_alloc(core_mem_alloc()), _io_port_alloc(core_mem_alloc()),
_irq_alloc(core_mem_alloc()),
_rom_slab(core_mem_alloc(), (Slab_block *)&init_slab_block_rom),
_thread_slab(core_mem_alloc(), (Slab_block *)&init_slab_block_thread)
{
/*
* We must be single-threaded at this stage and so this is safe.
*/
static bool initialized = 0;
if (initialized) panic("Platform constructed twice!");
initialized = true;
/*
* Determine address of boot-info structure. On startup, the OKL4 kernel
* provides this address in roottask's UTCB message register 1.
*/
Okl4::L4_Word_t boot_info_addr;
Okl4::L4_StoreMR(1, &boot_info_addr);
/*
* Request base address for UTCB locations
*/
_utcb_base = (addr_t)Okl4::utcb_base_get();
/*
* Define our own thread ID
*/
Okl4::__L4_TCR_Set_ThreadWord(UTCB_TCR_THREAD_WORD_MYSELF, Okl4::L4_rootserver.raw);
/*
* By default, the first roottask thread is executed at maxiumum priority.
* To make preemptive scheduler work as expected, we set the priority of
* ourself to the default priority of all other threads, which is 100 on
* OKL4.
*/
L4_Set_Priority(Okl4::L4_Myself(), Platform_thread::DEFAULT_PRIORITY);
/*
* Invoke boot-info parser for determining the memory configuration and
* the location of the boot modules.
*/
printf("parsing boot info at 0x%p...\n", (void *)boot_info_addr);
/*
* Initialize callback function for parsing the boot-info
*
* The supplied callback functions differ slightly from the interface
* used by the boot-info library in that they do not have a return
* type.
*/
static Okl4::bi_callbacks_t callbacks;
callbacks.init_mem = Platform::bi_init_mem;
callbacks.add_virt_mem = Platform::bi_add_virt_mem;
callbacks.add_phys_mem = Platform::bi_add_phys_mem;
callbacks.export_object = Platform::bi_export_object;
callbacks.new_ms = Platform::bi_new_ms;
Okl4::bootinfo_parse((void *)boot_info_addr, &callbacks, this);
/* make gathered boot-module info known to '_rom_fs' */
int num_boot_modules = min(num_boot_module_objects, num_boot_module_memsects);
for (int i = 0; i < num_boot_modules; i++) {
Rom_module *r = new (&_rom_slab)
Rom_module(boot_modules[i].base,
boot_modules[i].size,
boot_modules[i].name);
_rom_fs.insert(r);
}
/* initialize interrupt allocator */
_irq_alloc.add_range(0, 0x10);
/* I/O memory could be the whole user address space */
_io_mem_alloc.add_range(0, ~0);
/* I/O port allocator (only meaningful for x86) */
_io_port_alloc.add_range(0, 0x10000);
/* preserve stack area in core's virtual address space */
_core_mem_alloc.virt_alloc()->remove_range(stack_area_virtual_base(),
stack_area_virtual_size());
_vm_start = 0x1000;
_vm_size = 0xb0000000 - 0x1000;
/*
* When dumping 'ram_alloc', there are several small blocks in addition
* to the available free memory visible. These small blocks are used to
* hold the meta data for the ROM modules as initialized by '_setup_rom'.
*/
if (verbose_boot_info) {
printf(":phys_alloc: "); (*_core_mem_alloc.phys_alloc())()->dump_addr_tree();
printf(":virt_alloc: "); (*_core_mem_alloc.virt_alloc())()->dump_addr_tree();
printf(":io_mem: "); _io_mem_alloc()->dump_addr_tree();
printf(":io_port: "); _io_port_alloc()->dump_addr_tree();
printf(":irq: "); _irq_alloc()->dump_addr_tree();
printf(":rom_fs: "); _rom_fs.print_fs();
}
/* setup task object for core task */
_core_pd = new(core_mem_alloc()) Platform_pd(true);
/*
* We setup the thread object for thread0 in core task using a special
* interface that allows us to specify the thread ID. For core this creates
* the situation that task_id == thread_id of first task. But since we do
* not destroy this task, it should be no problem.
*/
Platform_thread *core_thread =
new(&_thread_slab) Platform_thread(0, "core.main");
core_thread->set_l4_thread_id(Okl4::L4_rootserver);
_core_pd->bind_thread(core_thread);
}
/********************************
** Generic platform interface **
********************************/
void Platform::wait_for_exit()
{
/*
* On OKL4, core never exits. So let us sleep forever.
*/
sleep_forever();
}
void Core_parent::exit(int exit_value) { }