genode/base/src/core/cpu_session_component.cc
Norman Feske 5fe29e8e4a Express affinities via Cartesian coordinates
This patch introduces new types for expressing CPU affinities. Instead
of dealing with physical CPU numbers, affinities are expressed as
rectangles in a grid of virtual CPU nodes. This clears the way to
conveniently assign sets of adjacent CPUs to subsystems, each of them
managing their respective viewport of the coordinate space.

By using 2D Cartesian coordinates, the locality of CPU nodes can be
modeled for different topologies such as SMP (simple Nx1 grid), grids of
NUMA nodes, or ring topologies.
2013-08-13 17:08:24 +02:00

230 lines
6.2 KiB
C++

/*
* \brief Core implementation of the CPU session/thread interfaces
* \author Christian Helmuth
* \date 2006-07-17
*
* FIXME arg_string and quota missing
*/
/*
* Copyright (C) 2006-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
/* Genode includes */
#include <base/printf.h>
#include <util/arg_string.h>
/* core includes */
#include <cpu_session_component.h>
#include <rm_session_component.h>
#include <platform_generic.h>
using namespace Genode;
void Cpu_thread_component::update_exception_sigh()
{
if (platform_thread()->pager())
platform_thread()->pager()->exception_handler(_sigh);
};
Thread_capability Cpu_session_component::create_thread(Name const &name,
addr_t utcb)
{
Cpu_thread_component *thread = 0;
try {
Lock::Guard slab_lock_guard(_thread_alloc_lock);
thread = new(&_thread_alloc) Cpu_thread_component(name.string(),
_priority, utcb,
_default_exception_handler);
} catch (Allocator::Out_of_memory) {
throw Out_of_metadata();
}
Lock::Guard thread_list_lock_guard(_thread_list_lock);
_thread_list.insert(thread);
return _thread_ep->manage(thread);
}
void Cpu_session_component::_unsynchronized_kill_thread(Cpu_thread_component *thread)
{
_thread_ep->dissolve(thread);
_thread_list.remove(thread);
Lock::Guard lock_guard(_thread_alloc_lock);
destroy(&_thread_alloc, thread);
}
void Cpu_session_component::kill_thread(Thread_capability thread_cap)
{
Cpu_thread_component * thread =
dynamic_cast<Cpu_thread_component *>(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return;
Lock::Guard lock_guard(_thread_list_lock);
_unsynchronized_kill_thread(thread);
}
int Cpu_session_component::set_pager(Thread_capability thread_cap,
Pager_capability pager_cap)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return -1;
Object_pool<Pager_object>::Guard p(_pager_ep->lookup_and_lock(pager_cap));
if (!p) return -2;
thread->platform_thread()->pager(p);
p->thread_cap(thread->cap());
return 0;
}
int Cpu_session_component::start(Thread_capability thread_cap,
addr_t ip, addr_t sp)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return -1;
/*
* If an exception handler was installed prior to the call of 'set_pager',
* we need to update the pager object with the current exception handler.
*/
thread->update_exception_sigh();
return thread->platform_thread()->start((void *)ip, (void *)sp);
}
void Cpu_session_component::pause(Thread_capability thread_cap)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return;
thread->platform_thread()->pause();
}
void Cpu_session_component::resume(Thread_capability thread_cap)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return;
thread->platform_thread()->resume();
}
void Cpu_session_component::cancel_blocking(Thread_capability thread_cap)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return;
thread->platform_thread()->cancel_blocking();
}
Thread_state Cpu_session_component::state(Thread_capability thread_cap)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) throw State_access_failed();
return thread->platform_thread()->state();
}
void Cpu_session_component::state(Thread_capability thread_cap,
Thread_state const &state)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) throw State_access_failed();
thread->platform_thread()->state(state);
}
void
Cpu_session_component::exception_handler(Thread_capability thread_cap,
Signal_context_capability sigh_cap)
{
/*
* By specifying an invalid thread capability, the caller sets the default
* exception handler for the CPU session.
*/
if (!thread_cap.valid()) {
_default_exception_handler = sigh_cap;
return;
}
/*
* If an invalid signal handler is specified for a valid thread, we revert
* the signal handler to the CPU session's default signal handler.
*/
if (!sigh_cap.valid()) {
sigh_cap = _default_exception_handler;
}
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return;
thread->sigh(sigh_cap);
}
Affinity::Space Cpu_session_component::affinity_space() const
{
return platform()->affinity_space();
}
void Cpu_session_component::affinity(Thread_capability thread_cap,
Affinity::Location location)
{
Object_pool<Cpu_thread_component>::Guard thread(_thread_ep->lookup_and_lock(thread_cap));
if (!thread) return;
thread->platform_thread()->affinity(location);
}
Cpu_session_component::Cpu_session_component(Rpc_entrypoint *thread_ep,
Pager_entrypoint *pager_ep,
Allocator *md_alloc,
const char *args)
: _thread_ep(thread_ep), _pager_ep(pager_ep),
_md_alloc(md_alloc, Arg_string::find_arg(args, "ram_quota").long_value(0)),
_thread_alloc(&_md_alloc), _priority(0)
{
Arg a = Arg_string::find_arg(args, "priority");
if (a.valid()) {
_priority = a.ulong_value(0);
/* clamp priority value to valid range */
_priority = min((unsigned)PRIORITY_LIMIT - 1, _priority);
}
}
Cpu_session_component::~Cpu_session_component()
{
Lock::Guard lock_guard(_thread_list_lock);
/*
* We have to keep the '_thread_list_lock' during the whole destructor to
* prevent races with incoming calls of the 'create_thread' function,
* adding new threads while we are destroying them.
*/
for (Cpu_thread_component *thread; (thread = _thread_list.first()); )
_unsynchronized_kill_thread(thread);
}