genode/dde_linux/src/lib/lxip/lxcc_emul.cc

636 lines
13 KiB
C++

/**
* \brief Linux emulation code
* \author Sebastian Sumpf
* \date 2013-08-28
*/
/*
* Copyright (C) 2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#include <base/allocator_avl.h>
#include <base/snprintf.h>
#include <dataspace/client.h>
#include <rm_session/connection.h>
#include <lx_emul.h>
#include <env.h>
extern "C" {
#include <dde_kit/memory.h>
}
/*
* VM-area to reserve for back-end allocator
*/
enum { VM_RESERVATION = 24 * 1024 * 1024 };
/*
* TODO: fine tune these
*/
unsigned long totalram_pages = VM_RESERVATION / PAGE_SIZE;
unsigned long num_physpages = totalram_pages;
namespace Genode {
template <unsigned VM_SIZE> class Slab_backend_alloc;
typedef Slab_backend_alloc<VM_RESERVATION> Backend_alloc;
class Slab_alloc;
}
/**
* Back-end allocator for Genode's slab allocator
*/
template <unsigned VM_SIZE>
class Genode::Slab_backend_alloc : public Genode::Allocator,
public Genode::Rm_connection
{
private:
enum {
BLOCK_SIZE = 1024 * 1024, /* 1 MB */
ELEMENTS = VM_SIZE / BLOCK_SIZE, /* MAX number of dataspaces in VM */
};
addr_t _base; /* virt. base address */
bool _cached; /* non-/cached RAM */
Ram_dataspace_capability _ds_cap[ELEMENTS]; /* dataspaces to put in VM */
addr_t _ds_phys[ELEMENTS]; /* physical bases of dataspaces */
int _index; /* current index in ds_cap */
Allocator_avl _range; /* manage allocations */
bool _alloc_block()
{
if (_index == ELEMENTS) {
PERR("Slab-backend exhausted!");
return false;
}
try {
_ds_cap[_index] = Genode::env()->ram_session()->alloc(BLOCK_SIZE, _cached);
/* attach at index * BLOCK_SIZE */
Rm_connection::attach_at(_ds_cap[_index], _index * BLOCK_SIZE, BLOCK_SIZE, 0);
/* lookup phys. address */
_ds_phys[_index] = Dataspace_client(_ds_cap[_index]).phys_addr();
} catch (...) { return false; }
/* return base + offset in VM area */
addr_t block_base = _base + (_index * BLOCK_SIZE);
++_index;
_range.add_range(block_base, BLOCK_SIZE);
return true;
}
public:
Slab_backend_alloc(bool cached)
: Rm_connection(0, VM_SIZE), _cached(cached), _index(0),
_range(env()->heap())
{
/* reserver attach us, anywere */
_base = env()->rm_session()->attach(dataspace());
}
/**
* Allocate
*/
bool alloc(size_t size, void **out_addr)
{
bool done = _range.alloc(size, out_addr);
if (done)
return done;
done = _alloc_block();
if (!done) {
PERR("Backend allocator exhausted\n");
return false;
}
return _range.alloc(size, out_addr);
}
void free(void *addr, size_t /* size */) { }
size_t overhead(size_t size) { return 0; }
/**
* Return phys address for given virtual addr.
*/
addr_t phys_addr(addr_t addr)
{
if (addr < _base || addr >= (_base + VM_SIZE))
return ~0UL;
int index = (addr - _base) / BLOCK_SIZE;
/* physical base of dataspace */
addr_t phys = _ds_phys[index];
if (!phys)
return ~0UL;
/* add offset */
phys += (addr - _base - (index * BLOCK_SIZE));
return phys;
}
addr_t start() const { return _base; }
addr_t end() const { return _base + VM_SIZE - 1; }
};
/**
* Slab allocator using our back-end allocator
*/
class Genode::Slab_alloc : public Genode::Slab
{
private:
size_t _calculate_block_size(size_t object_size)
{
size_t block_size = 8 * (object_size + sizeof(Slab_entry)) + sizeof(Slab_block);
return align_addr(block_size, 12);
}
public:
Slab_alloc(size_t object_size, Backend_alloc *allocator)
: Slab(object_size, _calculate_block_size(object_size), 0, allocator)
{ }
inline addr_t alloc()
{
addr_t result;
return (Slab::alloc(slab_size(), (void **)&result) ? result : 0);
}
};
/**
* Memory interface used used for Linux emulation
*/
class Malloc
{
private:
enum {
SLAB_START_LOG2 = 3, /* 8 B */
SLAB_STOP_LOG2 = 16, /* 64 KB */
NUM_SLABS = (SLAB_STOP_LOG2 - SLAB_START_LOG2) + 1,
};
typedef Genode::addr_t addr_t;
typedef Genode::Slab_alloc Slab_alloc;
typedef Genode::Slab_backend_alloc<VM_RESERVATION> Slab_backend_alloc;
Slab_backend_alloc *_back_allocator;
Slab_alloc *_allocator[NUM_SLABS];
bool _cached; /* cached or un-cached memory */
addr_t _start; /* VM region of this allocator */
addr_t _end;
/**
* Set 'value' at 'addr'
*/
void _set_at(addr_t addr, addr_t value) { *((addr_t *)addr) = value; }
/**
* Retrieve slab index belonging to given address
*/
unsigned _slab_index(Genode::addr_t **addr)
{
using namespace Genode;
/* get index */
addr_t index = *(*addr - 1);
/*
* If index large, we use aligned memory, retrieve beginning of slab entry
* and read index from there
*/
if (index > 32) {
*addr = (addr_t *)*(*addr - 1);
index = *(*addr - 1);
}
return index;
}
public:
Malloc(Slab_backend_alloc *alloc, bool cached)
: _back_allocator(alloc), _cached(cached), _start(alloc->start()),
_end(alloc->end())
{
/* init slab allocators */
for (unsigned i = SLAB_START_LOG2; i <= SLAB_STOP_LOG2; i++)
_allocator[i - SLAB_START_LOG2] = new (Genode::env()->heap())
Slab_alloc(1U << i, alloc);
}
/**
* Alloc in slabs
*/
void *alloc(Genode::size_t size, int align = 0, Genode::addr_t *phys = 0)
{
using namespace Genode;
/* += slab index + aligment size */
size += sizeof(addr_t) + (align > 2 ? (1 << align) : 0);
int msb = Genode::log2(size);
if (size > (1U << msb))
msb++;
if (size < (1U << SLAB_START_LOG2))
msb = SLAB_STOP_LOG2;
if (msb > SLAB_STOP_LOG2) {
PERR("Slab too large %u requested %zu cached %d", 1U << msb, size, _cached);
return 0;
}
addr_t addr = _allocator[msb - SLAB_START_LOG2]->alloc();
if (!addr) {
PERR("Failed to get slab for %u", 1 << msb);
return 0;
}
_set_at(addr, msb - SLAB_START_LOG2);
addr += sizeof(addr_t);
if (align > 2) {
/* save */
addr_t ptr = addr;
addr_t align_val = (1U << align);
addr_t align_mask = align_val - 1;
/* align */
addr = (addr + align_val) & ~align_mask;
/* write start address before aligned address */
_set_at(addr - sizeof(addr_t), ptr);
}
if (phys)
*phys = _back_allocator->phys_addr(addr);
return (addr_t *)addr;
}
void free(void const *a)
{
using namespace Genode;
addr_t *addr = (addr_t *)a;
unsigned nr = _slab_index(&addr);
_allocator[nr]->free((void *)(addr - 1));
}
size_t slab_size(void const *a)
{
using namespace Genode;
addr_t *addr =(addr_t *)a;
unsigned nr = _slab_index(&addr);
size_t size = 1 << (SLAB_START_LOG2 + nr);
size -= (addr_t)a - (addr_t)(addr - 1);
return size;
}
Genode::addr_t phys_addr(void *a)
{
return _back_allocator->phys_addr((addr_t)a);
}
/**
* Belongs given address to this allocator
*/
bool inside(addr_t const addr) const { return (addr > _start) && (addr <= _end); }
/**
* Cached memory allocator
*/
static Malloc *mem()
{
static Slab_backend_alloc _b(true);
static Malloc _m(&_b, true);
return &_m;
}
};
/*************************************
** Memory allocation, linux/slab.h **
*************************************/
void *kmalloc(size_t size, gfp_t flags)
{
void *addr = Malloc::mem()->alloc(size);
unsigned long a = (unsigned long)addr;
if (a & 0x3)
PERR("Unaligned kmalloc %lx", a);
// PDBG("Kmalloc: [%lx-%lx) from %p", a, a + size, __builtin_return_address(0));
return addr;
}
void *kzalloc(size_t size, gfp_t flags)
{
void *addr = kmalloc(size, flags);
if (addr)
Genode::memset(addr, 0, size);
//PDBG("Kmalloc: [%lx-%lx) from %p", (unsigned)addr, (unsigned)addr + size, __builtin_return_address(0));
return addr;
}
void *kcalloc(size_t n, size_t size, gfp_t flags)
{
if (size != 0 && n > ~0UL / size)
return 0;
return kzalloc(n * size, flags);
}
void kfree(const void *p)
{
if (Malloc::mem()->inside((Genode::addr_t)p))
Malloc::mem()->free(p);
else
PWRN("%p is not within our memory range called from %p",
p, __builtin_return_address(0));
}
void *kmalloc_node_track_caller(size_t size, gfp_t flags, int node)
{
return kmalloc(size, 0);
}
void *kzalloc_node(size_t size, gfp_t flags, int node)
{
return kzalloc(size, 0);
}
size_t ksize(const void *p)
{
if (!(Malloc::mem()->inside((Genode::addr_t)p))) {
PDBG("%p not in slab allocator", p);
return 0;
}
size_t size = Malloc::mem()->slab_size(p);
return size;
}
/********************
** linux/string.h **
********************/
char *strcpy(char *to, const char *from)
{
char *save = to;
for (; (*to = *from); ++from, ++to);
return(save);
}
char *strchr(const char *p, int ch)
{
char c;
c = ch;
for (;; ++p) {
if (*p == c)
return ((char *)p);
if (*p == '\0')
break;
}
return 0;
}
char *strnchr(const char *p, size_t count, int ch)
{
char c;
c = ch;
for (; count; ++p, count--) {
if (*p == c)
return ((char *)p);
if (*p == '\0')
break;
}
return 0;
}
size_t strnlen(const char *s, size_t maxlen)
{
size_t c;
for (c = 0; c < maxlen; c++)
if (!s[c])
return c;
return maxlen;
}
size_t strlen(const char *s) { return Genode::strlen(s); }
int strcmp(const char *s1, const char *s2) { return Genode::strcmp(s1, s2); }
int strncmp(const char *s1, const char *s2, size_t len) {
return Genode::strcmp(s1, s2, len); }
int memcmp(const void *p0, const void *p1, size_t size) {
return Genode::memcmp(p0, p1, size); }
int snprintf(char *str, size_t size, const char *format, ...)
{
va_list list;
va_start(list, format);
Genode::String_console sc(str, size);
sc.vprintf(format, list);
va_end(list);
return sc.len();
}
size_t strlcpy(char *dest, const char *src, size_t size)
{
size_t ret = strlen(src);
if (size) {
size_t len = (ret >= size) ? size - 1 : ret;
Genode::memcpy(dest, src, len);
dest[len] = '\0';
}
return ret;
}
void *kmemdup(const void *src, size_t len, gfp_t gfp)
{
void *ptr = kmalloc(len, gfp);
Genode::memcpy(ptr, src, len);
return ptr;
}
void *genode_memcpy(void *d, const void *s, size_t n)
{
return Genode::memcpy(d, s, n);
}
/******************
** linux/log2.h **
******************/
unsigned long ilog2(unsigned long n) { return Genode::log2<unsigned long>(n); }
/*******************
** linux/sched.h **
*******************/
extern "C" void __wait_event()
{
Genode::Signal s = Net::Env::receiver()->wait_for_signal();
static_cast<Genode::Signal_dispatcher_base *>(s.context())->dispatch(s.num());
}
long schedule_timeout_uninterruptible(signed long timeout)
{
return schedule_timeout(timeout);
}
signed long schedule_timeout(signed long timeout)
{
long start = jiffies;
__wait_event();
timeout -= jiffies - start;
return timeout < 0 ? 0 : timeout;
}
void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
__wait_event();
}
/******************
** linux/time.h **
******************/
unsigned long get_seconds(void)
{
return jiffies / HZ;
}
/*****************
** linux/gfp.h **
*****************/
class Avl_page : public Genode::Avl_node<Avl_page>
{
private:
Genode::addr_t _addr;
Genode::size_t _size;
struct page *_page;
public:
Avl_page(Genode::size_t size) : _size(size)
{
_addr =(Genode::addr_t)kmalloc(size, 0);
if (!_addr)
throw -1;
_page = (struct page *) kzalloc(sizeof(struct page), 0);
if (!_page) {
kfree((void *)_addr);
throw -2;
}
_page->addr = (void *)_addr;
atomic_set(&_page->_count, 1);
dde_kit_log(DEBUG_SLAB, "alloc page: %p addr: %lx-%lx", _page, _addr, _addr + size);
}
virtual ~Avl_page()
{
kfree((void *)_addr);
kfree((void *)_page);
}
struct page* page() { return _page; }
bool higher(Avl_page *c)
{
return c->_addr > _addr;
}
Avl_page *find_by_address(Genode::addr_t addr)
{
if (addr >= _addr && addr < _addr + _size)
return this;
bool side = addr > _addr;
Avl_page *c = Avl_node<Avl_page>::child(side);
return c ? c->find_by_address(addr) : 0;
}
};
static Genode::Avl_tree<Avl_page> tree;
struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
{
Avl_page *p;
try {
p = (Avl_page *)new (Genode::env()->heap()) Avl_page(PAGE_SIZE << order);
tree.insert(p);
} catch (...) { return 0; }
return p->page();
}
/****************
** linux/mm.h **
****************/
struct page *virt_to_head_page(const void *x)
{
Avl_page *p = tree.first()->find_by_address((Genode::addr_t)x);
dde_kit_log(DEBUG_SLAB, "virt_to_head_page: %p page %p\n", x,p ? p->page() : 0);
return p ? p->page() : 0;
}
void put_page(struct page *page)
{
if (!atomic_dec_and_test(&page->_count))
return;
dde_kit_log(DEBUG_SLAB, "put_page: %p", page);
Avl_page *p = tree.first()->find_by_address((Genode::addr_t)page->addr);
tree.remove(p);
destroy(Genode::env()->heap(), p);
}