genode/repos/os/src/app/ping/main.cc

597 lines
17 KiB
C++

/*
* \brief Test the reachability of a host on an IP network
* \author Martin Stein
* \date 2018-03-27
*/
/*
* Copyright (C) 2018 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
*/
/* local includes */
#include <nic.h>
#include <ipv4_config.h>
#include <dhcp_client.h>
#include <protocol.h>
/* Genode includes */
#include <net/ipv4.h>
#include <net/ethernet.h>
#include <net/arp.h>
#include <net/icmp.h>
#include <base/component.h>
#include <base/heap.h>
#include <base/attached_rom_dataspace.h>
#include <timer_session/connection.h>
using namespace Net;
using namespace Genode;
Microseconds read_sec_attr(Xml_node const node,
char const *name,
uint64_t const default_sec)
{
uint64_t sec = node.attribute_value(name, (uint64_t)0);
if (!sec) {
sec = default_sec;
}
return Microseconds(sec * 1000 * 1000);
}
class Main : public Nic_handler,
public Dhcp_client_handler
{
private:
using Signal_handler = Genode::Signal_handler<Main>;
using Periodic_timeout = Timer::Periodic_timeout<Main>;
enum { IPV4_TIME_TO_LIVE = 64 };
enum { DEFAULT_DST_PORT = 50000 };
enum { ICMP_DATA_SIZE = 56 };
enum { DEFAULT_COUNT = 5 };
enum { DEFAULT_PERIOD_SEC = 5 };
enum { SRC_PORT = 50000 };
Env &_env;
Attached_rom_dataspace _config_rom { _env, "config" };
Xml_node _config { _config_rom.xml() };
Timer::Connection _timer { _env };
Microseconds _send_time { 0 };
Microseconds _period_us { read_sec_attr(_config, "period_sec", (uint64_t)DEFAULT_PERIOD_SEC) };
Constructible<Periodic_timeout> _period { };
Heap _heap { &_env.ram(), &_env.rm() };
bool const _verbose { _config.attribute_value("verbose", false) };
Net::Nic _nic { _env, _heap, *this, _verbose };
Ipv4_address const _dst_ip { _config.attribute_value("dst_ip", Ipv4_address()) };
Mac_address _dst_mac { };
uint16_t _ip_id { 1 };
uint16_t _icmp_seq { 1 };
unsigned long _count { _config.attribute_value("count", (unsigned long)DEFAULT_COUNT) };
Constructible<Dhcp_client> _dhcp_client { };
Reconstructible<Ipv4_config> _ip_config { _config.attribute_value("interface", Ipv4_address_prefix()),
_config.attribute_value("gateway", Ipv4_address()),
Ipv4_address() };
Protocol const _protocol { _config.attribute_value("protocol", Protocol::ICMP) };
Port const _dst_port { _config.attribute_value("dst_port", Port(DEFAULT_DST_PORT)) };
void _handle_ip(Ethernet_frame &eth,
Size_guard &size_guard);
void _handle_icmp(Ipv4_packet &ip,
Size_guard &size_guard);
void _handle_udp(Ipv4_packet &ip,
Size_guard &size_guard);
void _handle_icmp_echo_reply(Ipv4_packet &ip,
Icmp_packet &icmp,
Size_guard &size_guard);
void _handle_icmp_dst_unreachbl(Ipv4_packet &ip,
Icmp_packet &icmp,
Size_guard &size_guard);
void _handle_arp(Ethernet_frame &eth,
Size_guard &size_guard);
void _broadcast_arp_request(Ipv4_address const &ip);
void _send_arp_reply(Ethernet_frame &req_eth,
Arp_packet &req_arp);
void _send_ping(Duration not_used = Duration(Microseconds(0)));
public:
struct Invalid_arguments : Exception { };
Main(Env &env);
/*****************
** Nic_handler **
*****************/
void handle_eth(Ethernet_frame &eth,
Size_guard &size_guard) override;
/*************************
** Dhcp_client_handler **
*************************/
void ip_config(Ipv4_config const &ip_config) override;
Ipv4_config const &ip_config() const override { return *_ip_config; }
};
void Main::ip_config(Ipv4_config const &ip_config)
{
if (_verbose) {
log("IP config: ", ip_config); }
_ip_config.construct(ip_config);
_period.construct(_timer, *this, &Main::_send_ping, _period_us);
}
Main::Main(Env &env) : _env(env)
{
/* exit unsuccessful if parameters are invalid */
if (_dst_ip == Ipv4_address() || _count == 0) {
throw Invalid_arguments(); }
/* if there is a static IP config, start sending pings periodically */
if (ip_config().valid) {
_period.construct(_timer, *this, &Main::_send_ping, _period_us); }
/* else, start the DHCP client for requesting an IP config */
else {
_dhcp_client.construct(_heap, _timer, _nic, *this); }
}
void Main::handle_eth(Ethernet_frame &eth,
Size_guard &size_guard)
{
try {
/* print receipt message */
if (_verbose) {
log("rcv ", eth); }
if (!ip_config().valid) {
_dhcp_client->handle_eth(eth, size_guard); }
/* drop packet if ETH does not target us */
if (eth.dst() != _nic.mac() &&
eth.dst() != Ethernet_frame::broadcast())
{
if (_verbose) {
log("bad ETH destination"); }
return;
}
/* select ETH sub-protocol */
switch (eth.type()) {
case Ethernet_frame::Type::ARP: _handle_arp(eth, size_guard); break;
case Ethernet_frame::Type::IPV4: _handle_ip(eth, size_guard); break;
default: ; }
}
catch (Drop_packet_inform exception) {
if (_verbose) {
log("drop packet: ", exception.msg); }
}
}
void Main::_handle_ip(Ethernet_frame &eth,
Size_guard &size_guard)
{
/* drop packet if IP does not target us */
Ipv4_packet &ip = eth.data<Ipv4_packet>(size_guard);
if (ip.dst() != ip_config().interface.address &&
ip.dst() != Ipv4_packet::broadcast())
{
if (_verbose) {
log("bad IP destination"); }
return;
}
/* drop packet if IP checksum is invalid */
if (ip.checksum_error()) {
if (_verbose) {
log("bad IP checksum"); }
return;
}
/* select IP sub-protocol */
switch (ip.protocol()) {
case Ipv4_packet::Protocol::ICMP: _handle_icmp(ip, size_guard); break;
case Ipv4_packet::Protocol::UDP: _handle_udp(ip, size_guard); break;
default: ; }
}
void Main::_handle_icmp_echo_reply(Ipv4_packet &ip,
Icmp_packet &icmp,
Size_guard &size_guard)
{
/* drop packet if our request was no ICMP */
if (_protocol != Protocol::ICMP) {
if (_verbose) {
log("bad IP protocol"); }
return;
}
/* check IP source */
if (ip.src() != _dst_ip) {
if (_verbose) {
log("bad IP source"); }
return;
}
/* check ICMP code */
if (icmp.code() != Icmp_packet::Code::ECHO_REPLY) {
if (_verbose) {
log("bad ICMP type/code"); }
return;
}
/* check ICMP identifier */
uint16_t const icmp_id = icmp.query_id();
if (icmp_id != _dst_port.value) {
if (_verbose) {
log("bad ICMP identifier"); }
return;
}
/* check ICMP sequence number */
uint16_t const icmp_seq = icmp.query_seq();
if (icmp_seq != _icmp_seq) {
if (_verbose) {
log("bad ICMP sequence number"); }
return;
}
/* check ICMP data size */
if (size_guard.unconsumed() != ICMP_DATA_SIZE) {
if (_verbose) {
log("bad ICMP data size"); }
return;
}
/* check ICMP data */
struct Data { char chr[0]; };
Data &data = icmp.data<Data>(size_guard);
char chr = 'a';
for (addr_t chr_id = 0; chr_id < ICMP_DATA_SIZE; chr_id++) {
if (data.chr[chr_id] != chr) {
if (_verbose) {
log("bad ICMP data"); }
return;
}
chr = chr < 'z' ? chr + 1 : 'a';
}
/* calculate time since the request was sent */
uint64_t time_us = _timer.curr_time().trunc_to_plain_us().value - _send_time.value;
uint64_t const time_ms = time_us / 1000UL;
time_us = time_us - time_ms * 1000UL;
/* print success message */
log(ICMP_DATA_SIZE + sizeof(Icmp_packet), " bytes from ", ip.src(),
": icmp_seq=", icmp_seq, " ttl=", (uint64_t)IPV4_TIME_TO_LIVE,
" time=", time_ms, ".", time_us ," ms");
/* raise ICMP sequence number and check exit condition */
_icmp_seq++;
_count--;
if (!_count) {
_env.parent().exit(0); }
}
void Main::_handle_icmp_dst_unreachbl(Ipv4_packet &ip,
Icmp_packet &icmp,
Size_guard &size_guard)
{
/* drop packet if embedded IP checksum is invalid */
Ipv4_packet &embed_ip = icmp.data<Ipv4_packet>(size_guard);
if (embed_ip.checksum_error()) {
if (_verbose) {
log("bad IP checksum in payload of ICMP error"); }
return;
}
/* select IP-encapsulated protocol */
switch (_protocol) {
case Protocol::ICMP:
{
/* drop packet if the ICMP error is not about ICMP */
if (embed_ip.protocol() != Ipv4_packet::Protocol::ICMP) {
if (_verbose) {
log("bad IP protocol in payload of ICMP error"); }
return;
}
/* drop packet if embedded ICMP identifier is invalid */
Icmp_packet &embed_icmp = embed_ip.data<Icmp_packet>(size_guard);
if (embed_icmp.query_id() != _dst_port.value) {
if (_verbose) {
log("bad ICMP identifier in payload of ICMP error"); }
return;
}
/* drop packet if embedded ICMP sequence number is invalid */
uint16_t const embed_icmp_seq = embed_icmp.query_seq();
if (embed_icmp_seq != _icmp_seq) {
if (_verbose) {
log("bad ICMP sequence number in payload of ICMP error"); }
return;
}
log("From ", ip.src(), " icmp_seq=", embed_icmp_seq, " Destination Unreachable");
break;
}
case Protocol::UDP:
{
/* drop packet if the ICMP error is not about UDP */
if (embed_ip.protocol() != Ipv4_packet::Protocol::UDP) {
if (_verbose) {
log("bad IP protocol in payload of ICMP error"); }
return;
}
/* drop packet if embedded UDP source port is invalid */
Udp_packet &embed_udp = embed_ip.data<Udp_packet>(size_guard);
if (embed_udp.src_port().value != SRC_PORT) {
if (_verbose) {
log("bad UDP source port in payload of ICMP error"); }
return;
}
/* drop packet if embedded UDP destination port is invalid */
if (embed_udp.dst_port().value != _dst_port.value) {
if (_verbose) {
log("bad UDP destination port in payload of ICMP error"); }
return;
}
log("From ", ip.src(), " Destination Unreachable");
break;
}
}
}
void Main::_handle_icmp(Ipv4_packet &ip,
Size_guard &size_guard)
{
/* drop packet if ICMP checksum is invalid */
Icmp_packet &icmp = ip.data<Icmp_packet>(size_guard);
if (icmp.checksum_error(size_guard.unconsumed())) {
if (_verbose) {
log("bad ICMP checksum"); }
return;
}
/* select ICMP type */
switch (icmp.type()) {
case Icmp_packet::Type::ECHO_REPLY: _handle_icmp_echo_reply(ip, icmp, size_guard); break;
case Icmp_packet::Type::DST_UNREACHABLE: _handle_icmp_dst_unreachbl(ip, icmp, size_guard); break;
default:
if (_verbose) {
log("bad ICMP type"); }
return;
}
}
void Main::_handle_udp(Ipv4_packet &ip,
Size_guard &size_guard)
{
/* drop packet if our request was no UDP */
if (_protocol != Protocol::UDP) {
if (_verbose) {
log("bad IP protocol"); }
return;
}
/* drop packet if UDP checksum is invalid */
Udp_packet &udp = ip.data<Udp_packet>(size_guard);
if (udp.checksum_error(ip.src(), ip.dst())) {
if (_verbose) {
log("bad UDP checksum"); }
return;
}
/* drop packet if UDP source port is invalid */
if (udp.src_port().value != _dst_port.value) {
if (_verbose) {
log("bad UDP source port"); }
return;
}
/* drop packet if UDP destination port is invalid */
if (udp.dst_port().value != SRC_PORT) {
if (_verbose) {
log("bad UDP destination port"); }
return;
}
/* calculate time since the request was sent */
uint64_t time_us = _timer.curr_time().trunc_to_plain_us().value - _send_time.value;
uint64_t const time_ms = time_us / 1000UL;
time_us = time_us - time_ms * 1000UL;
/* print success message */
log(udp.length(), " bytes from ", ip.src(), " ttl=", (uint64_t)IPV4_TIME_TO_LIVE,
" time=", time_ms, ".", time_us ," ms");
/* check exit condition */
_count--;
if (!_count) {
_env.parent().exit(0); }
}
void Main::_handle_arp(Ethernet_frame &eth,
Size_guard &size_guard)
{
/* check ARP protocol- and hardware address type */
Arp_packet &arp = eth.data<Arp_packet>(size_guard);
if (!arp.ethernet_ipv4()) {
error("ARP for unknown protocol"); }
/* check ARP operation */
switch (arp.opcode()) {
case Arp_packet::REPLY:
/* check whether we waited for this ARP reply */
if (_dst_mac != Mac_address()) {
return; }
if (ip_config().interface.prefix_matches(_dst_ip)) {
if (arp.src_ip() != _dst_ip) {
return; }
} else {
if (arp.src_ip() != ip_config().gateway) {
return; }
}
/* set destination MAC address and retry to ping */
_dst_mac = arp.src_mac();
_send_ping();
return;
case Arp_packet::REQUEST:
/* check whether the ARP request targets us */
if (arp.dst_ip() != ip_config().interface.address) {
return; }
_send_arp_reply(eth, arp);
default: ; }
}
void Main::_send_arp_reply(Ethernet_frame &req_eth,
Arp_packet &req_arp)
{
_nic.send(sizeof(Ethernet_frame) + sizeof(Arp_packet),
[&] (void *pkt_base, Size_guard &size_guard)
{
/* write Ethernet header */
Ethernet_frame &eth = Ethernet_frame::construct_at(pkt_base, size_guard);
eth.dst(req_eth.src());
eth.src(_nic.mac());
eth.type(Ethernet_frame::Type::ARP);
/* write ARP header */
Arp_packet &arp = eth.construct_at_data<Arp_packet>(size_guard);
arp.hardware_address_type(Arp_packet::ETHERNET);
arp.protocol_address_type(Arp_packet::IPV4);
arp.hardware_address_size(sizeof(Mac_address));
arp.protocol_address_size(sizeof(Ipv4_address));
arp.opcode(Arp_packet::REPLY);
arp.src_mac(_nic.mac());
arp.src_ip(ip_config().interface.address);
arp.dst_mac(req_eth.src());
arp.dst_ip(req_arp.src_ip());
});
}
void Main::_broadcast_arp_request(Ipv4_address const &dst_ip)
{
_nic.send(sizeof(Ethernet_frame) + sizeof(Arp_packet),
[&] (void *pkt_base, Size_guard &size_guard)
{
/* write Ethernet header */
Ethernet_frame &eth = Ethernet_frame::construct_at(pkt_base, size_guard);
eth.dst(Mac_address(0xff));
eth.src(_nic.mac());
eth.type(Ethernet_frame::Type::ARP);
/* write ARP header */
Arp_packet &arp = eth.construct_at_data<Arp_packet>(size_guard);
arp.hardware_address_type(Arp_packet::ETHERNET);
arp.protocol_address_type(Arp_packet::IPV4);
arp.hardware_address_size(sizeof(Mac_address));
arp.protocol_address_size(sizeof(Ipv4_address));
arp.opcode(Arp_packet::REQUEST);
arp.src_mac(_nic.mac());
arp.src_ip(ip_config().interface.address);
arp.dst_mac(Mac_address(0xff));
arp.dst_ip(dst_ip);
});
}
void Main::_send_ping(Duration)
{
/* if we do not yet know the Ethernet destination, request it via ARP */
if (_dst_mac == Mac_address()) {
if (ip_config().interface.prefix_matches(_dst_ip)) {
_broadcast_arp_request(_dst_ip); }
else {
_broadcast_arp_request(ip_config().gateway); }
return;
}
_nic.send(sizeof(Ethernet_frame) + sizeof(Ipv4_packet) +
sizeof(Icmp_packet) + ICMP_DATA_SIZE,
[&] (void *pkt_base, Size_guard &size_guard)
{
/* create ETH header */
Ethernet_frame &eth = Ethernet_frame::construct_at(pkt_base, size_guard);
eth.dst(_dst_mac);
eth.src(_nic.mac());
eth.type(Ethernet_frame::Type::IPV4);
/* create IP header */
size_t const ip_off = size_guard.head_size();
Ipv4_packet &ip = eth.construct_at_data<Ipv4_packet>(size_guard);
ip.header_length(sizeof(Ipv4_packet) / 4);
ip.version(4);
ip.time_to_live(IPV4_TIME_TO_LIVE);
ip.src(ip_config().interface.address);
ip.dst(_dst_ip);
/* select IP-encapsulated protocol */
switch (_protocol) {
case Protocol::ICMP:
{
/* adapt IP header to ICMP */
ip.protocol(Ipv4_packet::Protocol::ICMP);
/* create ICMP header */
Icmp_packet &icmp = ip.construct_at_data<Icmp_packet>(size_guard);
icmp.type(Icmp_packet::Type::ECHO_REQUEST);
icmp.code(Icmp_packet::Code::ECHO_REQUEST);
icmp.query_id(_dst_port.value);
icmp.query_seq(_icmp_seq);
/* fill ICMP data with characters from 'a' to 'z' */
struct Data { char chr[ICMP_DATA_SIZE]; };
Data &data = icmp.data<Data>(size_guard);
char chr = 'a';
for (addr_t chr_id = 0; chr_id < ICMP_DATA_SIZE; chr_id++) {
data.chr[chr_id] = chr;
chr = chr < 'z' ? chr + 1 : 'a';
}
/* finish ICMP header */
icmp.update_checksum(ICMP_DATA_SIZE);
break;
}
case Protocol::UDP:
{
/* adapt IP header to UDP */
ip.protocol(Ipv4_packet::Protocol::UDP);
/* create UDP header */
size_t const udp_off = size_guard.head_size();
Udp_packet &udp = ip.construct_at_data<Udp_packet>(size_guard);
udp.src_port(Port(SRC_PORT));
udp.dst_port(_dst_port);
/* finish UDP header */
udp.length(size_guard.head_size() - udp_off);
udp.update_checksum(ip.src(), ip.dst());
break;
}
}
/* finish IP header */
ip.total_length(size_guard.head_size() - ip_off);
ip.update_checksum();
});
_send_time = _timer.curr_time().trunc_to_plain_us();
}
void Component::construct(Env &env) { static Main main(env); }