/* * \brief Unix emulation environment for Genode * \author Norman Feske * \date 2011-02-14 */ /* * Copyright (C) 2011-2013 Genode Labs GmbH * * This file is part of the Genode OS framework, which is distributed * under the terms of the GNU General Public License version 2. */ /* Genode includes */ #include #include #include #include /* Noux includes */ #include #include #include #include #include #include #include #include #include #include #include #include /* supported file systems */ #include #include #include #include #include #include #include #include static const bool verbose_quota = false; static bool trace_syscalls = false; static bool verbose = false; namespace Noux { static Noux::Child *init_child; bool is_init_process(Child *child) { return child == init_child; } void init_process_exited() { init_child = 0; } }; extern void init_network(); /** * Timeout thread for SYSCALL_SELECT */ namespace Noux { using namespace Genode; class Timeout_scheduler : Thread<4096>, public Alarm_scheduler { private: Timer::Connection _timer; Alarm::Time _curr_time; enum { TIMER_GRANULARITY_MSEC = 10 }; void entry() { for (;;) { _timer.msleep(TIMER_GRANULARITY_MSEC); Alarm_scheduler::handle(_curr_time); _curr_time += TIMER_GRANULARITY_MSEC; } } public: Timeout_scheduler(unsigned long curr_time) : Thread("timeout_sched"), _curr_time(curr_time) { start(); } Alarm::Time curr_time() const { return _curr_time; } }; struct Timeout_state { bool timed_out; Timeout_state() : timed_out(false) { } }; class Timeout_alarm : public Alarm { private: Timeout_state *_state; Lock *_blocker; Timeout_scheduler *_scheduler; public: Timeout_alarm(Timeout_state *st, Lock *blocker, Timeout_scheduler *scheduler, Time timeout) : _state(st), _blocker(blocker), _scheduler(scheduler) { _scheduler->schedule_absolute(this, _scheduler->curr_time() + timeout); _state->timed_out = false; } void discard() { _scheduler->discard(this); } protected: bool on_alarm(unsigned) override { _state->timed_out = true; _blocker->unlock(); return false; } }; /** * This function is used to generate inode values from the given * path using the FNV-1a algorithm. */ inline uint32_t hash_path(const char *path, size_t len) { const unsigned char * p = reinterpret_cast(path); uint32_t hash = 2166136261U; for (size_t i = 0; i < len; i++) { hash ^= p[i]; hash *= 16777619; } return hash; } }; /***************************** ** Noux syscall dispatcher ** *****************************/ bool Noux::Child::syscall(Noux::Session::Syscall sc) { if (trace_syscalls) Genode::printf("PID %d -> SYSCALL %s\n", pid(), Noux::Session::syscall_name(sc)); bool result = false; try { switch (sc) { case SYSCALL_WRITE: { size_t const count_in = _sysio->write_in.count; for (size_t offset = 0; offset != count_in; ) { Shared_pointer io = _lookup_channel(_sysio->write_in.fd); if (!io->is_nonblocking()) _block_for_io_channel(io, false, true, false); if (io->check_unblock(false, true, false)) { /* * 'io->write' is expected to update * '_sysio->write_out.count' and 'offset' */ result = io->write(_sysio, offset); if (result == false) break; } else { if (result == false) { /* nothing was written yet */ _sysio->error.write = Vfs::File_io_service::WRITE_ERR_INTERRUPT; } break; } } break; } case SYSCALL_READ: { Shared_pointer io = _lookup_channel(_sysio->read_in.fd); if (!io->is_nonblocking()) _block_for_io_channel(io, true, false, false); if (io->check_unblock(true, false, false)) result = io->read(_sysio); else _sysio->error.read = Vfs::File_io_service::READ_ERR_INTERRUPT; break; } case SYSCALL_FTRUNCATE: { Shared_pointer io = _lookup_channel(_sysio->ftruncate_in.fd); _block_for_io_channel(io, false, true, false); if (io->check_unblock(false, true, false)) result = io->ftruncate(_sysio); else _sysio->error.ftruncate = Vfs::File_io_service::FTRUNCATE_ERR_INTERRUPT; break; } case SYSCALL_STAT: case SYSCALL_LSTAT: /* XXX implement difference between 'lstat' and 'stat' */ { /** * We calculate the inode by hashing the path because there is * no inode registry in noux. */ size_t path_len = strlen(_sysio->stat_in.path); uint32_t path_hash = hash_path(_sysio->stat_in.path, path_len); _sysio->error.stat = root_dir()->stat(_sysio->stat_in.path, _sysio->stat_out.st); result = (_sysio->error.stat == Vfs::Directory_service::STAT_OK); /* * Instead of using the uid/gid given by the actual file system * we use the ones specificed in the config. */ if (result) { _sysio->stat_out.st.uid = user_info()->uid; _sysio->stat_out.st.gid = user_info()->gid; _sysio->stat_out.st.inode = path_hash; } break; } case SYSCALL_FSTAT: { Shared_pointer io = _lookup_channel(_sysio->fstat_in.fd); result = io->fstat(_sysio); if (result) { Sysio::Path path; /** * Only actual fd's are valid fstat targets. */ if (io->path(path, sizeof (path))) { size_t path_len = strlen(path); uint32_t path_hash = hash_path(path, path_len); _sysio->stat_out.st.inode = path_hash; } } break; } case SYSCALL_FCNTL: if (_sysio->fcntl_in.cmd == Sysio::FCNTL_CMD_SET_FD_FLAGS) { /* we assume that there is only the close-on-execve flag */ _lookup_channel(_sysio->fcntl_in.fd)->close_on_execve = !!_sysio->fcntl_in.long_arg; result = true; break; } result = _lookup_channel(_sysio->fcntl_in.fd)->fcntl(_sysio); break; case SYSCALL_OPEN: { Vfs::Vfs_handle *vfs_handle = 0; _sysio->error.open = root_dir()->open(_sysio->open_in.path, _sysio->open_in.mode, &vfs_handle); if (!vfs_handle) break; char const *leaf_path = root_dir()->leaf_path(_sysio->open_in.path); /* * File descriptors of opened directories are handled by * '_root_dir'. In this case, we use the absolute path as leaf * path because path operations always refer to the global * root. */ if (&vfs_handle->ds() == root_dir()) leaf_path = _sysio->open_in.path; Shared_pointer channel(new Vfs_io_channel(_sysio->open_in.path, leaf_path, root_dir(), vfs_handle, *_sig_rec), Genode::env()->heap()); _sysio->open_out.fd = add_io_channel(channel); result = true; break; } case SYSCALL_CLOSE: { remove_io_channel(_sysio->close_in.fd); result = true; break; } case SYSCALL_IOCTL: result = _lookup_channel(_sysio->ioctl_in.fd)->ioctl(_sysio); break; case SYSCALL_LSEEK: result = _lookup_channel(_sysio->lseek_in.fd)->lseek(_sysio); break; case SYSCALL_DIRENT: result = _lookup_channel(_sysio->dirent_in.fd)->dirent(_sysio); break; case SYSCALL_EXECVE: { /* * We have to check the dataspace twice because the binary * could be a script that uses an interpreter which maybe * does not exist. */ Dataspace_capability binary_ds = root_dir()->dataspace(_sysio->execve_in.filename); if (!binary_ds.valid()) { _sysio->error.execve = Sysio::EXECVE_NONEXISTENT; break; } Child_envexecve_in.args)> child_env(_sysio->execve_in.filename, binary_ds, _sysio->execve_in.args, _sysio->execve_in.env); root_dir()->release(_sysio->execve_in.filename, binary_ds); binary_ds = root_dir()->dataspace(child_env.binary_name()); if (!binary_ds.valid()) { _sysio->error.execve = Sysio::EXECVE_NONEXISTENT; break; } root_dir()->release(child_env.binary_name(), binary_ds); try { _parent_execve.execve_child(*this, child_env.binary_name(), child_env.args(), child_env.env(), verbose); /* * 'return' instead of 'break' to skip possible signal delivery, * which might cause the old child process to exit itself */ return true; } catch (Child::Binary_does_not_exist) { _sysio->error.execve = Sysio::EXECVE_NONEXISTENT; } break; } case SYSCALL_SELECT: { Sysio::Select_fds &in_fds = _sysio->select_in.fds; size_t in_fds_total = in_fds.total_fds(); int _rd_array[in_fds_total]; int _wr_array[in_fds_total]; long timeout_sec = _sysio->select_in.timeout.sec; long timeout_usec = _sysio->select_in.timeout.usec; bool timeout_reached = false; /* reset the blocker lock to the 'locked' state */ _blocker.unlock(); _blocker.lock(); /* * Register ourself at all watched I/O channels * * We instantiate as many notifiers as we have file * descriptors to observe. Each notifier is associated * with the child's blocking semaphore. When any of the * notifiers get woken up, the semaphore gets unblocked. * * XXX However, the blocker may get unblocked for other * conditions such as the destruction of the child. * ...to be done. */ Wake_up_notifier notifiers[in_fds_total]; for (Genode::size_t i = 0; i < in_fds_total; i++) { int fd = in_fds.array[i]; if (!fd_in_use(fd)) continue; Shared_pointer io = io_channel_by_fd(fd); notifiers[i].lock = &_blocker; io->register_wake_up_notifier(¬ifiers[i]); } /** * Register ourself at the Io_receptor_registry * * Each entry in the registry will be unblocked if an external * event has happend, e.g. network I/O. */ Io_receptor receptor(&_blocker); io_receptor_registry()->register_receptor(&receptor); /* * Block for one action of the watched file descriptors */ for (;;) { /* * Check I/O channels of specified file descriptors for * unblock condition. Return if one I/O channel satisfies * the condition. */ size_t unblock_rd = 0; size_t unblock_wr = 0; size_t unblock_ex = 0; /* process read fds */ for (Genode::size_t i = 0; i < in_fds_total; i++) { int fd = in_fds.array[i]; if (!fd_in_use(fd)) continue; Shared_pointer io = io_channel_by_fd(fd); if (in_fds.watch_for_rd(i)) if (io->check_unblock(true, false, false)) { _rd_array[unblock_rd++] = fd; } if (in_fds.watch_for_wr(i)) if (io->check_unblock(false, true, false)) { _wr_array[unblock_wr++] = fd; } if (in_fds.watch_for_ex(i)) if (io->check_unblock(false, false, true)) { unblock_ex++; } } if (unblock_rd || unblock_wr || unblock_ex) { /** * Merge the fd arrays in one output array */ for (size_t i = 0; i < unblock_rd; i++) { _sysio->select_out.fds.array[i] = _rd_array[i]; } _sysio->select_out.fds.num_rd = unblock_rd; /* XXX could use a pointer to select_out.fds.array instead */ for (size_t j = unblock_rd, i = 0; i < unblock_wr; i++, j++) { _sysio->select_out.fds.array[j] = _wr_array[i]; } _sysio->select_out.fds.num_wr = unblock_wr; /* exception fds are currently not considered */ _sysio->select_out.fds.num_ex = unblock_ex; result = true; break; } /* * Return if timeout is zero or timeout exceeded */ if (_sysio->select_in.timeout.zero() || timeout_reached) { /* if (timeout_reached) PINF("timeout_reached"); else PINF("timeout.zero()"); */ _sysio->select_out.fds.num_rd = 0; _sysio->select_out.fds.num_wr = 0; _sysio->select_out.fds.num_ex = 0; result = true; break; } /* * Return if signals are pending */ if (!_pending_signals.empty()) { _sysio->error.select = Sysio::SELECT_ERR_INTERRUPT; break; } /* * Block at barrier except when reaching the timeout */ if (!_sysio->select_in.timeout.infinite()) { unsigned long to_msec = (timeout_sec * 1000) + (timeout_usec / 1000); Timeout_state ts; Timeout_alarm ta(&ts, &_blocker, Noux::timeout_scheduler(), to_msec); /* block until timeout is reached or we were unblocked */ _blocker.lock(); if (ts.timed_out) { timeout_reached = 1; } else { /* * We woke up before reaching the timeout, * so we discard the alarm */ ta.discard(); } } else { /* let's block infinitely */ _blocker.lock(); } } /* * Unregister barrier at watched I/O channels */ for (Genode::size_t i = 0; i < in_fds_total; i++) { int fd = in_fds.array[i]; if (!fd_in_use(fd)) continue; Shared_pointer io = io_channel_by_fd(fd); io->unregister_wake_up_notifier(¬ifiers[i]); } /* * Unregister receptor */ io_receptor_registry()->unregister_receptor(&receptor); break; } case SYSCALL_FORK: { Genode::addr_t ip = _sysio->fork_in.ip; Genode::addr_t sp = _sysio->fork_in.sp; Genode::addr_t parent_cap_addr = _sysio->fork_in.parent_cap_addr; int const new_pid = pid_allocator()->alloc(); /* * XXX To ease debugging, it would be useful to generate a * unique name that includes the PID instead of just * reusing the name of the parent. */ Child *child = new Child(_child_policy.name(), this, _kill_broadcaster, *this, new_pid, _sig_rec, root_dir(), _args, _env.env(), _cap_session, _parent_services, _resources.ep, true, env()->heap(), _destruct_queue, verbose); Family_member::insert(child); _assign_io_channels_to(child); /* copy our address space into the new child */ _resources.rm.replay(child->ram(), child->rm(), child->ds_registry(), _resources.ep); /* start executing the main thread of the new process */ child->start_forked_main_thread(ip, sp, parent_cap_addr); /* activate child entrypoint, thereby starting the new process */ child->start(); _sysio->fork_out.pid = new_pid; result = true; break; } case SYSCALL_GETPID: { _sysio->getpid_out.pid = pid(); return true; } case SYSCALL_WAIT4: { Family_member *exited = _sysio->wait4_in.nohang ? poll4() : wait4(); if (exited) { _sysio->wait4_out.pid = exited->pid(); _sysio->wait4_out.status = exited->exit_status(); Family_member::remove(exited); if (verbose) PINF("submit exit signal for PID %d", exited->pid()); static_cast(exited)->submit_exit_signal(); } else { if (_sysio->wait4_in.nohang) { _sysio->wait4_out.pid = 0; _sysio->wait4_out.status = 0; } else { _sysio->error.wait4 = Sysio::WAIT4_ERR_INTERRUPT; break; } } result = true; break; } case SYSCALL_PIPE: { Shared_pointer pipe(new Pipe, Genode::env()->heap()); Shared_pointer pipe_sink(new Pipe_sink_io_channel(pipe, *_sig_rec), Genode::env()->heap()); Shared_pointer pipe_source(new Pipe_source_io_channel(pipe, *_sig_rec), Genode::env()->heap()); _sysio->pipe_out.fd[0] = add_io_channel(pipe_source); _sysio->pipe_out.fd[1] = add_io_channel(pipe_sink); result = true; break; } case SYSCALL_DUP2: { int fd = add_io_channel(io_channel_by_fd(_sysio->dup2_in.fd), _sysio->dup2_in.to_fd); _sysio->dup2_out.fd = fd; result = true; break; } case SYSCALL_UNLINK: _sysio->error.unlink = root_dir()->unlink(_sysio->unlink_in.path); result = (_sysio->error.unlink == Vfs::Directory_service::UNLINK_OK); break; case SYSCALL_READLINK: { Vfs::file_size out_count = 0; _sysio->error.readlink = root_dir()->readlink(_sysio->readlink_in.path, _sysio->readlink_out.chunk, min(_sysio->readlink_in.bufsiz, sizeof(_sysio->readlink_out.chunk)), out_count); _sysio->readlink_out.count = out_count; result = (_sysio->error.readlink == Vfs::Directory_service::READLINK_OK); break; } case SYSCALL_RENAME: _sysio->error.rename = root_dir()->rename(_sysio->rename_in.from_path, _sysio->rename_in.to_path); result = (_sysio->error.rename == Vfs::Directory_service::RENAME_OK); break; case SYSCALL_MKDIR: _sysio->error.mkdir = root_dir()->mkdir(_sysio->mkdir_in.path, 0); result = (_sysio->error.mkdir == Vfs::Directory_service::MKDIR_OK); break; case SYSCALL_SYMLINK: _sysio->error.symlink = root_dir()->symlink(_sysio->symlink_in.oldpath, _sysio->symlink_in.newpath); result = (_sysio->error.symlink == Vfs::Directory_service::SYMLINK_OK); break; case SYSCALL_USERINFO: { if (_sysio->userinfo_in.request == Sysio::USERINFO_GET_UID || _sysio->userinfo_in.request == Sysio::USERINFO_GET_GID) { _sysio->userinfo_out.uid = Noux::user_info()->uid; _sysio->userinfo_out.gid = Noux::user_info()->gid; result = true; break; } /* * Since NOUX supports exactly one user, return false if we * got a unknown uid. */ if (_sysio->userinfo_in.uid != Noux::user_info()->uid) break; Genode::memcpy(_sysio->userinfo_out.name, Noux::user_info()->name, sizeof(Noux::user_info()->name)); Genode::memcpy(_sysio->userinfo_out.shell, Noux::user_info()->shell, sizeof(Noux::user_info()->shell)); Genode::memcpy(_sysio->userinfo_out.home, Noux::user_info()->home, sizeof(Noux::user_info()->home)); _sysio->userinfo_out.uid = user_info()->uid; _sysio->userinfo_out.gid = user_info()->gid; result = true; break; } case SYSCALL_GETTIMEOFDAY: { /** * Since the timeout_scheduler thread is started after noux it * basicly returns the eleapsed time since noux was started. We * abuse this timer to provide a more useful implemenation of * gettimeofday() to make certain programs (e.g. ping(1)) happy. * Note: this is just a short-term solution because Genode currently * lacks a proper time interface (there is a RTC driver however, but * there is no interface for it). */ unsigned long time = Noux::timeout_scheduler()->curr_time(); _sysio->gettimeofday_out.sec = (time / 1000); _sysio->gettimeofday_out.usec = (time % 1000) * 1000; result = true; break; } case SYSCALL_CLOCK_GETTIME: { /** * It's the same procedure as in SYSCALL_GETTIMEOFDAY. */ unsigned long time = Noux::timeout_scheduler()->curr_time(); switch (_sysio->clock_gettime_in.clock_id) { /* CLOCK_SECOND is used by time(3) in the libc. */ case Sysio::CLOCK_ID_SECOND: { _sysio->clock_gettime_out.sec = (time / 1000); _sysio->clock_gettime_out.nsec = 0; result = true; break; } default: { _sysio->clock_gettime_out.sec = 0; _sysio->clock_gettime_out.nsec = 0; _sysio->error.clock = Sysio::CLOCK_ERR_INVALID; break; } } break; } case SYSCALL_UTIMES: { /** * This systemcall is currently not implemented because we lack * the needed mechanisms in most file-systems. * * But we return true anyway to keep certain programs, e.g. make * happy. */ result = true; break; } case SYSCALL_SYNC: { root_dir()->sync(); result = true; break; } case SYSCALL_KILL: { if (_kill_broadcaster.kill(_sysio->kill_in.pid, _sysio->kill_in.sig)) result = true; else _sysio->error.kill = Sysio::KILL_ERR_SRCH; break; } case SYSCALL_SOCKET: case SYSCALL_GETSOCKOPT: case SYSCALL_SETSOCKOPT: case SYSCALL_ACCEPT: case SYSCALL_BIND: case SYSCALL_LISTEN: case SYSCALL_SEND: case SYSCALL_SENDTO: case SYSCALL_RECV: case SYSCALL_RECVFROM: case SYSCALL_GETPEERNAME: case SYSCALL_SHUTDOWN: case SYSCALL_CONNECT: result = _syscall_net(sc); break; case SYSCALL_INVALID: break; } } catch (Invalid_fd) { _sysio->error.general = Vfs::Directory_service::ERR_FD_INVALID; PERR("Invalid file descriptor"); } catch (...) { PERR("Unexpected exception"); } /* handle signals which might have occured */ while (!_pending_signals.empty() && (_sysio->pending_signals.avail_capacity() > 0)) { _sysio->pending_signals.add(_pending_signals.get()); } return result; } /** * Return name of init process as specified in the config */ static char *name_of_init_process() { enum { INIT_NAME_LEN = 128 }; static char buf[INIT_NAME_LEN]; Genode::config()->xml_node().sub_node("start").attribute("name").value(buf, sizeof(buf)); return buf; } /** * Read command-line arguments of init process from config */ static Noux::Args const &args_of_init_process() { static char args_buf[4096]; static Noux::Args args(args_buf, sizeof(args_buf)); Genode::Xml_node start_node = Genode::config()->xml_node().sub_node("start"); try { /* the first argument is the program name */ args.append(name_of_init_process()); Genode::Xml_node arg_node = start_node.sub_node("arg"); for (; ; arg_node = arg_node.next("arg")) { static char buf[512]; arg_node.attribute("value").value(buf, sizeof(buf)); args.append(buf); } } catch (Genode::Xml_node::Nonexistent_sub_node) { } catch (Noux::Args::Overrun) { PERR("Argument buffer overrun"); } return args; } /** * Return string containing the environment variables of init * * The variable definitions are separated by zeros. The end of the string is * marked with another zero. */ static Noux::Sysio::Env &env_string_of_init_process() { static Noux::Sysio::Env env; int index = 0; /* read environment variables for init process from config */ Genode::Xml_node start_node = Genode::config()->xml_node().sub_node("start"); try { Genode::Xml_node arg_node = start_node.sub_node("env"); for (; ; arg_node = arg_node.next("env")) { static char name_buf[256], value_buf[256]; arg_node.attribute("name").value(name_buf, sizeof(name_buf)); arg_node.attribute("value").value(value_buf, sizeof(value_buf)); Genode::size_t env_var_size = Genode::strlen(name_buf) + Genode::strlen("=") + Genode::strlen(value_buf) + 1; if (index + env_var_size < sizeof(env)) { Genode::snprintf(&env[index], env_var_size, "%s=%s", name_buf, value_buf); index += env_var_size; } else { env[index] = 0; break; } } } catch (Genode::Xml_node::Nonexistent_sub_node) { } return env; } Noux::Pid_allocator *Noux::pid_allocator() { static Noux::Pid_allocator inst; return &inst; } Noux::Timeout_scheduler *Noux::timeout_scheduler() { static Noux::Timeout_scheduler inst(0); return &inst; } Noux::User_info* Noux::user_info() { static Noux::User_info inst; return &inst; } Noux::Io_receptor_registry * Noux::io_receptor_registry() { static Noux::Io_receptor_registry _inst; return &_inst; } Terminal::Connection *Noux::terminal() { static Terminal::Connection _inst; return &_inst; } Genode::Dataspace_capability Noux::ldso_ds_cap() { try { static Genode::Rom_connection rom("ld.lib.so"); static Genode::Dataspace_capability ldso_ds = rom.dataspace(); return ldso_ds; } catch (...) { } return Genode::Dataspace_capability(); } /* * This lock is needed to delay the insertion of signals into a child object. * This is necessary during an 'execve()' syscall, when signals get copied from * the old child object to the new one. Without the lock, an IO channel could * insert a signal into both objects, which could lead to a duplicated signal * in the new child object. */ Genode::Lock &Noux::signal_lock() { static Genode::Lock inst; return inst; } void *operator new (Genode::size_t size) { return Genode::env()->heap()->alloc(size); } class File_system_factory : public Vfs::File_system_factory { public: struct Entry_base : Genode::List::Element { char const * const name; Entry_base(char const *name) : name(name) { } virtual Vfs::File_system *create(Genode::Xml_node node) = 0; bool matches(Genode::Xml_node node) const { return node.has_type(name); } }; template struct Entry : Entry_base { Entry(char const *name) : Entry_base(name) { } Vfs::File_system *create(Genode::Xml_node node) override { return new FILE_SYSTEM(node); } }; private: Genode::List _list; public: template void add_fs_type() { _list.insert(new Entry(FS::name())); } Vfs::File_system *create(Genode::Xml_node node) override { for (Entry_base *e = _list.first(); e; e = e->next()) if (e->matches(node)) return e->create(node); return 0; } }; int main(int argc, char **argv) { using namespace Noux; PINF("--- noux started ---"); /* register dynamic linker */ Genode::Process::dynamic_linker(ldso_ds_cap()); /* whitelist of service requests to be routed to the parent */ static Genode::Service_registry parent_services; char const *service_names[] = { "LOG", "ROM", "Timer", 0 }; for (unsigned i = 0; service_names[i]; i++) parent_services.insert(new Genode::Parent_service(service_names[i])); static Genode::Cap_connection cap; /* obtain global configuration */ try { trace_syscalls = config()->xml_node().attribute("trace_syscalls").has_value("yes"); } catch (Xml_node::Nonexistent_attribute) { } try { verbose = config()->xml_node().attribute("verbose").has_value("yes"); } catch (Xml_node::Nonexistent_attribute) { } /* register file systems */ static File_system_factory fs_factory; fs_factory.add_fs_type(); fs_factory.add_fs_type(); fs_factory.add_fs_type(); fs_factory.add_fs_type(); fs_factory.add_fs_type(); fs_factory.add_fs_type(); fs_factory.add_fs_type(); fs_factory.add_fs_type(); /* initialize virtual file system */ static Vfs::Dir_file_system root_dir(config()->xml_node().sub_node("fstab"), fs_factory); /* set user information */ try { user_info()->set_info(config()->xml_node().sub_node("user")); } catch (...) { } /* initialize network */ init_network(); /* * Entrypoint used to virtualize child resources such as RAM, RM */ enum { STACK_SIZE = 2*1024*sizeof(long) }; static Genode::Rpc_entrypoint resources_ep(&cap, STACK_SIZE, "noux_rsc_ep"); /* create init process */ static Genode::Signal_receiver sig_rec; static Destruct_queue destruct_queue; struct Kill_broadcaster_implementation : Kill_broadcaster { Family_member *init_process; bool kill(int pid, Noux::Sysio::Signal sig) { return init_process->deliver_kill(pid, sig); } }; static Kill_broadcaster_implementation kill_broadcaster; init_child = new Noux::Child(name_of_init_process(), 0, kill_broadcaster, *init_child, pid_allocator()->alloc(), &sig_rec, &root_dir, args_of_init_process(), env_string_of_init_process(), &cap, parent_services, resources_ep, false, env()->heap(), destruct_queue, verbose); kill_broadcaster.init_process = init_child; /* * I/O channels must be dynamically allocated to handle cases where the * init program closes one of these. */ typedef Terminal_io_channel Tio; /* just a local abbreviation */ Shared_pointer channel_0(new Tio(*Noux::terminal(), Tio::STDIN, sig_rec), Genode::env()->heap()), channel_1(new Tio(*Noux::terminal(), Tio::STDOUT, sig_rec), Genode::env()->heap()), channel_2(new Tio(*Noux::terminal(), Tio::STDERR, sig_rec), Genode::env()->heap()); init_child->add_io_channel(channel_0, 0); init_child->add_io_channel(channel_1, 1); init_child->add_io_channel(channel_2, 2); init_child->start(); /* handle asynchronous events */ while (init_child) { /* * limit the scope of the 'Signal' object, so the signal context may * get freed by the destruct queue */ { Genode::Signal signal = sig_rec.wait_for_signal(); Signal_dispatcher_base *dispatcher = static_cast(signal.context()); for (unsigned i = 0; i < signal.num(); i++) dispatcher->dispatch(1); } destruct_queue.flush(); if (verbose_quota) PINF("quota: avail=%zd, used=%zd", env()->ram_session()->avail(), env()->ram_session()->used()); } PINF("-- exiting noux ---"); return 0; }