/* * \brief Fiasco platform interface implementation * \author Christian Helmuth * \author Stefan Kalkowski * \date 2006-04-11 */ /* * Copyright (C) 2006-2013 Genode Labs GmbH * * This file is part of the Genode OS framework, which is distributed * under the terms of the GNU General Public License version 2. */ /* Genode includes */ #include #include #include #include /* base-internal includes */ #include #include /* core includes */ #include #include #include #include #include #include /* Fiasco includes */ namespace Fiasco { #include #include #include #include #include #include #include #include static l4_kernel_info_t *kip; } using namespace Genode; static const bool verbose = true; static const bool verbose_core_pf = false; static const bool verbose_region_alloc = false; /*********************************** ** Core address space management ** ***********************************/ static Synced_range_allocator &_core_address_ranges() { static Synced_range_allocator _core_address_ranges(nullptr); return _core_address_ranges; } enum { PAGER_STACK_ELEMENTS = 1024 }; static unsigned long _core_pager_stack[PAGER_STACK_ELEMENTS]; /** * Core pager "service loop" */ /* Build with frame pointer to make GDB backtraces work. See issue #1061. */ __attribute__((optimize("-fno-omit-frame-pointer"))) __attribute__((noinline)) static void _core_pager_loop() { using namespace Fiasco; bool send_reply = false; l4_umword_t label; l4_utcb_t *utcb = l4_utcb(); l4_msgtag_t snd_tag = l4_msgtag(0, 0, 0, 0); l4_msgtag_t tag; while (true) { if (send_reply) tag = l4_ipc_reply_and_wait(utcb, snd_tag, &label, L4_IPC_NEVER); else tag = l4_ipc_wait(utcb, &label, L4_IPC_NEVER); if (!tag.is_page_fault()) { PWRN("Received something different than a pagefault, ignoring ..."); continue; } /* read fault information */ l4_umword_t pfa = l4_trunc_page(l4_utcb_mr()->mr[0]); l4_umword_t ip = l4_utcb_mr()->mr[1]; bool rw = l4_utcb_mr()->mr[0] & 2; //TODO enum if (pfa < (l4_umword_t)L4_PAGESIZE) { /* NULL pointer access */ PERR("Possible null pointer %s at %lx IP %lx", rw ? "WRITE" : "READ", pfa, ip); /* do not unblock faulter */ send_reply = false; continue; } else if (!_core_address_ranges().valid_addr(pfa)) { /* page-fault address is not in RAM */ PERR("%s access outside of RAM at %lx IP %lx", rw ? "WRITE" : "READ", pfa, ip); /* do not unblock faulter */ send_reply = false; continue; } else if (verbose_core_pf) PDBG("pfa=%lx ip=%lx", pfa, ip); /* my pf handler is sigma0 - just touch the appropriate page */ if (rw) touch_rw((void *)pfa, 1); else touch_ro((void *)pfa, 1); send_reply = true; } } Platform::Sigma0::Sigma0(Cap_index* i) : Pager_object(0, Affinity::Location()) { /* * We use the Pager_object here in a slightly different manner, * just to tunnel the pager cap to the Platform_thread::start method. */ cap(i); } Platform::Core_pager::Core_pager(Platform_pd *core_pd, Sigma0 *sigma0) : Platform_thread("core.pager"), Pager_object(0, Affinity::Location()) { Platform_thread::pager(sigma0); if (core_pd->bind_thread(this)) panic("Binding thread failed"); cap(thread().local); /* stack begins at the top end of the '_core_pager_stack' array */ void *sp = (void *)&_core_pager_stack[PAGER_STACK_ELEMENTS - 1]; start((void *)_core_pager_loop, sp); using namespace Fiasco; l4_thread_control_start(); l4_thread_control_pager(thread().local.dst()); l4_thread_control_exc_handler(thread().local.dst()); l4_msgtag_t tag = l4_thread_control_commit(L4_BASE_THREAD_CAP); if (l4_msgtag_has_error(tag)) PWRN("l4_thread_control_commit failed!"); } Platform::Core_pager *Platform::core_pager() { static Core_pager _core_pager(core_pd(), &_sigma0); return &_core_pager; } /*********************************** ** Helper for L4 region handling ** ***********************************/ struct Region { addr_t start; addr_t end; Region() : start(0), end(0) { } Region(addr_t s, addr_t e) : start(s), end(e) { } /** * Returns true if the specified range intersects with the region */ bool intersects(addr_t base, size_t size) const { return (((base + size) > start) && (base < end)); } }; /** * Log region */ static inline void print_region(Region r) { printf("[%08lx,%08lx) %08lx", r.start, r.end, r.end - r.start); } /** * Add region to allocator */ static inline void add_region(Region r, Range_allocator &alloc) { if (verbose_region_alloc) { printf("%p add: ", &alloc); print_region(r); printf("\n"); } /* adjust region */ addr_t start = trunc_page(r.start); addr_t end = round_page(r.end); alloc.add_range(start, end - start); } /** * Remove region from allocator */ static inline void remove_region(Region r, Range_allocator &alloc) { if (verbose_region_alloc) { printf("%p remove: ", &alloc); print_region(r); printf("\n"); } /* adjust region */ addr_t start = trunc_page(r.start); addr_t end = round_page(r.end); alloc.remove_range(start, end - start); } /** * Request any RAM page from Sigma0 */ static inline int sigma0_req_region(addr_t *addr, unsigned log2size) { using namespace Fiasco; l4_utcb_mr()->mr[0] = SIGMA0_REQ_FPAGE_ANY; l4_utcb_mr()->mr[1] = l4_fpage(0, log2size, 0).raw; /* open receive window for mapping */ l4_utcb_br()->bdr &= ~L4_BDR_OFFSET_MASK; l4_utcb_br()->br[0] = L4_ITEM_MAP; l4_utcb_br()->br[1] = l4_fpage(0, L4_WHOLE_ADDRESS_SPACE, L4_FPAGE_RWX).raw; l4_msgtag_t tag = l4_msgtag(L4_PROTO_SIGMA0, 2, 0, 0); tag = l4_ipc_call(L4_BASE_PAGER_CAP, l4_utcb(), tag, L4_IPC_NEVER); if (l4_ipc_error(tag, l4_utcb())) return -1; if (l4_msgtag_items(tag) != 1) return -2; *addr = l4_utcb_mr()->mr[0] & (~0UL << L4_PAGESHIFT); return 0; } static Fiasco::l4_kernel_info_t *sigma0_map_kip() { using namespace Fiasco; /* signal we want to map the KIP */ l4_utcb_mr()->mr[0] = SIGMA0_REQ_KIP; /* open receive window for KIP one-to-one */ l4_utcb_br()->bdr &= ~L4_BDR_OFFSET_MASK; l4_utcb_br()->br[0] = L4_ITEM_MAP; l4_utcb_br()->br[1] = l4_fpage(0, L4_WHOLE_ADDRESS_SPACE, L4_FPAGE_RX).raw; /* call sigma0 */ l4_msgtag_t tag = l4_ipc_call(L4_BASE_PAGER_CAP, l4_utcb(), l4_msgtag(L4_PROTO_SIGMA0, 1, 0, 0), L4_IPC_NEVER); if (l4_ipc_error(tag, l4_utcb())) return 0; l4_addr_t ret = l4_trunc_page(l4_utcb_mr()->mr[0]); if (!ret) panic("kip mapping failed"); return (l4_kernel_info_t*) ret; } void Platform::_setup_mem_alloc() { /* * Completely map program image by touching all pages read-only to * prevent sigma0 from handing out those page as anonymous memory. */ volatile const char *beg, *end; beg = (const char *)(((Genode::addr_t)&_prog_img_beg) & L4_PAGEMASK); end = (const char *)&_prog_img_end; for ( ; beg < end; beg += L4_PAGESIZE) (void)(*beg); /* request pages of known page size starting with largest */ size_t log2_sizes[] = { L4_LOG2_SUPERPAGESIZE, L4_LOG2_PAGESIZE }; for (unsigned i = 0; i < sizeof(log2_sizes)/sizeof(*log2_sizes); ++i) { size_t log2_size = log2_sizes[i]; size_t size = 1UL << log2_size; int err = 0; addr_t addr = 0; Region region; /* request any page of current size from sigma0 */ do { err = sigma0_req_region(&addr, log2_size); if (!err) { /* XXX do not allocate page0 */ if (addr == 0) { Fiasco::l4_task_unmap(Fiasco::L4_BASE_TASK_CAP, Fiasco::l4_fpage(0, log2_size, Fiasco::L4_FPAGE_RW), Fiasco::L4_FP_ALL_SPACES); continue; } region.start = addr; region.end = addr + size; if (!region.intersects(stack_area_virtual_base(), stack_area_virtual_size())) { add_region(region, _ram_alloc); add_region(region, _core_address_ranges()); } remove_region(region, _io_mem_alloc); remove_region(region, _region_alloc); } } while (!err); } } void Platform::_setup_irq_alloc() { using namespace Fiasco; l4_icu_info_t info { .features = 0 }; l4_msgtag_t res = l4_icu_info(Fiasco::L4_BASE_ICU_CAP, &info); if (l4_error(res)) panic("could not determine number of IRQs"); _irq_alloc.add_range(0, info.nr_irqs); } void Platform::_setup_basics() { using namespace Fiasco; kip = sigma0_map_kip(); if (kip->magic != L4_KERNEL_INFO_MAGIC) panic("Sigma0 mapped something but not the KIP"); if (verbose) { printf("\n"); printf("KIP @ %p\n", kip); printf(" magic: %08zx\n", (size_t)kip->magic); printf(" version: %08zx\n", (size_t)kip->version); printf(" sigma0 "); printf(" esp: %08lx eip: %08lx\n", kip->sigma0_esp, kip->sigma0_eip); printf(" sigma1 "); printf(" esp: %08lx eip: %08lx\n", kip->sigma1_esp, kip->sigma1_eip); printf(" root "); printf(" esp: %08lx eip: %08lx\n", kip->root_esp, kip->root_eip); } /* add KIP as ROM module */ _kip_rom = Rom_module((addr_t)kip, L4_PAGESIZE, "l4v2_kip"); _rom_fs.insert(&_kip_rom); /* update multi-boot info pointer from KIP */ addr_t mb_info_addr = kip->user_ptr; if (verbose) printf("MBI @ %lx\n", mb_info_addr); /* parse memory descriptors - look for virtual memory configuration */ /* XXX we support only one VM region (here and also inside RM) */ using Fiasco::L4::Kip::Mem_desc; _vm_start = 0; _vm_size = 0; Mem_desc *desc = Mem_desc::first(kip); for (unsigned i = 0; i < Mem_desc::count(kip); ++i) if (desc[i].is_virtual()) { _vm_start = round_page(desc[i].start()); _vm_size = trunc_page(desc[i].end() - _vm_start + 1); break; } if (_vm_size == 0) panic("Virtual memory configuration not found"); /* configure applicable address space but never use page0 */ _vm_size = _vm_start == 0 ? _vm_size - L4_PAGESIZE : _vm_size; _vm_start = _vm_start == 0 ? L4_PAGESIZE : _vm_start; _region_alloc.add_range(_vm_start, _vm_size); /* preserve stack area in core's virtual address space */ _region_alloc.remove_range(stack_area_virtual_base(), stack_area_virtual_size()); /* preserve utcb- area in core's virtual address space */ _region_alloc.remove_range((addr_t)l4_utcb(), L4_PAGESIZE * 16); /* I/O memory could be the whole user address space */ /* FIXME if the kernel helps to find out max address - use info here */ _io_mem_alloc.add_range(0, ~0); /* remove KIP and MBI area from region and IO_MEM allocator */ remove_region(Region((addr_t)kip, (addr_t)kip + L4_PAGESIZE), _region_alloc); remove_region(Region((addr_t)kip, (addr_t)kip + L4_PAGESIZE), _io_mem_alloc); remove_region(Region(mb_info_addr, mb_info_addr + _mb_info.size()), _region_alloc); remove_region(Region(mb_info_addr, mb_info_addr + _mb_info.size()), _io_mem_alloc); /* remove core program image memory from region and IO_MEM allocator */ addr_t img_start = (addr_t) &_prog_img_beg; addr_t img_end = (addr_t) &_prog_img_end; remove_region(Region(img_start, img_end), _region_alloc); remove_region(Region(img_start, img_end), _io_mem_alloc); /* image is accessible by core */ add_region(Region(img_start, img_end), _core_address_ranges()); } void Platform::_setup_rom() { Rom_module rom; for (unsigned i = FIRST_ROM; i < _mb_info.num_modules(); i++) { if (!(rom = _mb_info.get_module(i)).valid()) continue; Rom_module *new_rom = new(core_mem_alloc()) Rom_module(rom); _rom_fs.insert(new_rom); /* map module */ touch_ro((const void*)new_rom->addr(), new_rom->size()); if (verbose) printf(" mod[%d] [%p,%p) %s\n", i, (void *)new_rom->addr(), ((char *)new_rom->addr()) + new_rom->size(), new_rom->name()); /* zero remainder of last ROM page */ size_t count = L4_PAGESIZE - rom.size() % L4_PAGESIZE; if (count != L4_PAGESIZE) memset(reinterpret_cast(rom.addr() + rom.size()), 0, count); /* remove ROM area from region and IO_MEM allocator */ remove_region(Region(new_rom->addr(), new_rom->addr() + new_rom->size()), _region_alloc); remove_region(Region(new_rom->addr(), new_rom->addr() + new_rom->size()), _io_mem_alloc); /* add area to core-accessible ranges */ add_region(Region(new_rom->addr(), new_rom->addr() + new_rom->size()), _core_address_ranges()); } Rom_module *kip_rom = new(core_mem_alloc()) Rom_module((addr_t)Fiasco::kip, L4_PAGESIZE, "kip"); _rom_fs.insert(kip_rom); } Platform::Platform() : _ram_alloc(nullptr), _io_mem_alloc(core_mem_alloc()), _io_port_alloc(core_mem_alloc()), _irq_alloc(core_mem_alloc()), _region_alloc(core_mem_alloc()), _cap_id_alloc(core_mem_alloc()), _mb_info(sigma0_map_kip()->user_ptr, true), _sigma0(cap_map()->insert(_cap_id_alloc.alloc(), Fiasco::L4_BASE_PAGER_CAP)) { /* * We must be single-threaded at this stage and so this is safe. */ static bool initialized = 0; if (initialized) panic("Platform constructed twice!"); initialized = true; _setup_basics(); _setup_mem_alloc(); _setup_io_port_alloc(); _setup_irq_alloc(); _setup_rom(); if (verbose) { printf(":ram_alloc: "); _ram_alloc()->dump_addr_tree(); printf(":region_alloc: "); _region_alloc()->dump_addr_tree(); printf(":io_mem: "); _io_mem_alloc()->dump_addr_tree(); printf(":io_port: "); _io_port_alloc()->dump_addr_tree(); printf(":irq: "); _irq_alloc()->dump_addr_tree(); printf(":rom_fs: "); _rom_fs.print_fs(); printf(":core ranges: "); _core_address_ranges()()->dump_addr_tree(); } Core_cap_index* pdi = reinterpret_cast(cap_map()->insert(_cap_id_alloc.alloc(), Fiasco::L4_BASE_TASK_CAP)); Core_cap_index* thi = reinterpret_cast(cap_map()->insert(_cap_id_alloc.alloc(), Fiasco::L4_BASE_THREAD_CAP)); Core_cap_index* irqi = reinterpret_cast(cap_map()->insert(_cap_id_alloc.alloc())); /* setup pd object for core pd */ _core_pd = new(core_mem_alloc()) Platform_pd(pdi); /* * We setup the thread object for thread0 in core pd using a special * interface that allows us to specify the capability slot. */ Platform_thread *core_thread = new(core_mem_alloc()) Platform_thread(thi, irqi, "core.main"); core_thread->pager(&_sigma0); if (_core_pd->bind_thread(core_thread)) panic("Binding thread failed"); } /******************************** ** Generic platform interface ** ********************************/ void Platform::wait_for_exit() { /* * On Fiasco, Core never exits. So let us sleep forever. */ sleep_forever(); } Affinity::Space Platform::affinity_space() const { using namespace Genode; using namespace Fiasco; l4_sched_cpu_set_t cpus = l4_sched_cpu_set(0, 0, 1); l4_umword_t cpus_max; l4_msgtag_t res = l4_scheduler_info(L4_BASE_SCHEDULER_CAP, &cpus_max, &cpus); if (l4_error(res)) { PERR("could not detect number of CPUs - assuming 1 CPU"); return 1; } unsigned cpus_online = 0; for (unsigned i = 0; i < sizeof(cpus.map) * 8; i++) if ((cpus.map >> i) & 0x1) cpus_online ++; /* * Currently, we do not gather any information about the topology of CPU * nodes but just return a one-dimensional affinity space. */ return Affinity::Space(cpus_online, 1); } void Core_parent::exit(int exit_value) { }