/* * \brief CPU (processing time) manager session interface * \author Christian Helmuth * \date 2006-06-27 * * :Question: * * Why are thread operations not methods of the thread but * methods of the CPU session? * * :Answer: * * This enables the CPU session to impose policies on thread * operations. These policies are based on the session * construction arguments. If thread operations would be * provided as thread methods, Thread would need to consult * its container object (its CPU session) about the authorization * of each operation and, thereby, would introduce a circular * dependency between CPU session and Thread. */ /* * Copyright (C) 2006-2013 Genode Labs GmbH * * This file is part of the Genode OS framework, which is distributed * under the terms of the GNU General Public License version 2. */ #ifndef _INCLUDE__CPU_SESSION__CPU_SESSION_H_ #define _INCLUDE__CPU_SESSION__CPU_SESSION_H_ #include #include #include #include #include #include #include #include #include #include namespace Genode { struct Cpu_session : Session { /********************* ** Exception types ** *********************/ class Thread_creation_failed : public Exception { }; class State_access_failed : public Exception { }; class Out_of_metadata : public Exception { }; static const char *service_name() { return "CPU"; } enum { THREAD_NAME_LEN = 48 }; enum { PRIORITY_LIMIT = 1 << 16 }; enum { DEFAULT_PRIORITY = 0 }; typedef Rpc_in_buffer Name; virtual ~Cpu_session() { } /** * Create a new thread * * \param name name for the thread * \param utcb Base of the UTCB that will be used by the thread * \return capability representing the new thread * \throw Thread_creation_failed * \throw Out_of_metadata */ virtual Thread_capability create_thread(Name const &name, addr_t utcb = 0) = 0; /** * Get dataspace of the UTCB that is used by the specified thread */ virtual Ram_dataspace_capability utcb(Thread_capability thread) = 0; /** * Kill an existing thread * * \param thread capability of the thread to kill */ virtual void kill_thread(Thread_capability thread) = 0; /** * Set paging capabilities for thread * * \param thread thread to configure * \param pager capability used to propagate page faults */ virtual int set_pager(Thread_capability thread, Pager_capability pager) = 0; /** * Modify instruction and stack pointer of thread - start the * thread * * \param thread thread to start * \param ip initial instruction pointer * \param sp initial stack pointer * * \return 0 on success */ virtual int start(Thread_capability thread, addr_t ip, addr_t sp) = 0; /** * Pause the specified thread * * After calling this function, the execution of the thread can be * continued by calling 'resume'. */ virtual void pause(Thread_capability thread) = 0; /** * Resume the specified thread */ virtual void resume(Thread_capability thread) = 0; /** * Cancel a currently blocking operation * * \param thread thread to unblock */ virtual void cancel_blocking(Thread_capability thread) = 0; /** * Get the current state of a specific thread * * \param thread targeted thread * \return state of the targeted thread * \throw State_access_failed */ virtual Thread_state state(Thread_capability thread) = 0; /** * Override the current state of a specific thread * * \param thread targeted thread * \param state state that shall be applied * \throw State_access_failed */ virtual void state(Thread_capability thread, Thread_state const &state) = 0; /** * Register signal handler for exceptions of the specified thread * * If 'thread' is an invalid capability, the default exception * handler for the CPU session is set. This handler is used for * all threads that have no explicitly installed exception handler. * The new default signal handler will take effect for threads * created after the call. * * On Linux, this exception is delivered when the process triggers * a SIGCHLD. On other platforms, this exception is delivered on * the occurrence of CPU exceptions such as division by zero. */ virtual void exception_handler(Thread_capability thread, Signal_context_capability handler) = 0; /** * Enable/disable single stepping for specified thread. * * Since this functions is currently supported by a small number of * platforms, we provide a default implementation * * \param thread thread to set into single step mode * \param enable true = enable single-step mode; false = disable */ virtual void single_step(Thread_capability, bool) {} /** * Return affinity space of CPU nodes available to the CPU session * * The dimension of the affinity space as returned by this function * represent the physical CPUs that are available. */ virtual Affinity::Space affinity_space() const = 0; /** * Define affinity of thread to one or multiple CPU nodes * * In the normal case, a thread is assigned to a single CPU. * Specifying more than one CPU node is supposed to principally * allow a CPU service to balance the load of threads among * multiple CPUs. */ virtual void affinity(Thread_capability thread, Affinity::Location affinity) = 0; /** * Translate generic priority value to kernel-specific priority levels * * \param pf_prio_limit maximum priority used for the kernel, must * be power of 2 * \param prio generic priority value as used by the CPU * session interface * \param inverse order of platform priorities, if true * 'pf_prio_limit' corresponds to the highest * priority, otherwise it refers to the * lowest priority. * \return platform-specific priority value */ static unsigned scale_priority(unsigned pf_prio_limit, unsigned prio, bool inverse = true) { /* if no priorities are used, use the platform priority limit */ if (prio == 0) return pf_prio_limit; /* * Generic priority values are (0 is highest, 'PRIORITY_LIMIT' * is lowest. On platforms where priority levels are defined * the other way round, we have to invert the priority value. */ prio = inverse ? Cpu_session::PRIORITY_LIMIT - prio : prio; /* scale value to platform priority range 0..pf_prio_limit */ return (prio*pf_prio_limit)/Cpu_session::PRIORITY_LIMIT; } /********************* ** RPC declaration ** *********************/ GENODE_RPC_THROW(Rpc_create_thread, Thread_capability, create_thread, GENODE_TYPE_LIST(Thread_creation_failed, Out_of_metadata), Name const &, addr_t); GENODE_RPC(Rpc_utcb, Ram_dataspace_capability, utcb, Thread_capability); GENODE_RPC(Rpc_kill_thread, void, kill_thread, Thread_capability); GENODE_RPC(Rpc_set_pager, int, set_pager, Thread_capability, Pager_capability); GENODE_RPC(Rpc_start, int, start, Thread_capability, addr_t, addr_t); GENODE_RPC(Rpc_pause, void, pause, Thread_capability); GENODE_RPC(Rpc_resume, void, resume, Thread_capability); GENODE_RPC(Rpc_cancel_blocking, void, cancel_blocking, Thread_capability); GENODE_RPC_THROW(Rpc_get_state, Thread_state, state, GENODE_TYPE_LIST(State_access_failed), Thread_capability); GENODE_RPC_THROW(Rpc_set_state, void, state, GENODE_TYPE_LIST(State_access_failed), Thread_capability, Thread_state const &); GENODE_RPC(Rpc_exception_handler, void, exception_handler, Thread_capability, Signal_context_capability); GENODE_RPC(Rpc_single_step, void, single_step, Thread_capability, bool); GENODE_RPC(Rpc_affinity_space, Affinity::Space, affinity_space); GENODE_RPC(Rpc_affinity, void, affinity, Thread_capability, Affinity::Location); /* * 'GENODE_RPC_INTERFACE' declaration done manually * * The number of RPC function of this interface exceeds the maximum * number of elements supported by 'Meta::Type_list'. Therefore, we * construct the type list by hand using nested type tuples instead * of employing the convenience macro 'GENODE_RPC_INTERFACE'. */ typedef Meta::Type_tuple > > > > > > > > > > > > > Rpc_functions; }; } #endif /* _INCLUDE__CPU_SESSION__CPU_SESSION_H_ */