/* * \brief Platform interface implementation * \author Norman Feske * \author Sebastian Sumpf * \author Alexander Boettcher * \date 2009-10-02 */ /* * Copyright (C) 2009-2013 Genode Labs GmbH * * This file is part of the Genode OS framework, which is distributed * under the terms of the GNU General Public License version 2. */ /* Genode includes */ #include #include #include #include /* core includes */ #include #include #include #include /* NOVA includes */ #include using namespace Genode; using namespace Nova; enum { verbose_boot_info = true }; Native_utcb *main_thread_utcb(); /** * Initial value of esp register, saved by the crt0 startup code * * This value contains the address of the hypervisor information page. */ extern long __initial_sp; /** * Pointer to the UTCB of the main thread */ Utcb *__main_thread_utcb; /** * Virtual address range consumed by core's program image */ extern unsigned _prog_img_beg, _prog_img_end; /** * Capability selector of root PD */ addr_t __core_pd_sel; /** * Map preserved physical page for the exclusive read-execute-only used by core */ addr_t Platform::_map_page(addr_t phys_page, addr_t pages) { /* set an invalid address */ void * core_local_ptr = 0; if (!region_alloc()->alloc(pages << get_page_size_log2(), &core_local_ptr)) return 0; addr_t core_local_addr = reinterpret_cast(core_local_ptr); int res = map_local(__main_thread_utcb, phys_page << get_page_size_log2(), core_local_addr, pages, Nova::Rights(true, false, true), true); if (res) PERR("map_local failed res=%d", res); return res ? 0 : core_local_addr; } /***************************** ** Core page-fault handler ** *****************************/ enum { CORE_PAGER_UTCB_ADDR = 0xbff02000 }; /** * IDC handler for the page-fault portal */ static void page_fault_handler() { Utcb *utcb = (Utcb *)CORE_PAGER_UTCB_ADDR; addr_t pf_addr = utcb->qual[1]; addr_t pf_ip = utcb->ip; addr_t pf_sp = utcb->sp; addr_t pf_type = utcb->qual[0]; print_page_fault("\nPAGE-FAULT IN CORE", pf_addr, pf_ip, (Genode::Rm_session::Fault_type)pf_type, ~0UL); /* dump stack trace */ struct Core_img { addr_t _beg; addr_t _end; addr_t *_ip; Core_img(addr_t sp) { extern addr_t _dtors_end; _beg = (addr_t)&_prog_img_beg; _end = (addr_t)&_dtors_end; _ip = (addr_t *)sp; for (;!ip_valid(); _ip++) {} } addr_t *ip() { return _ip; } void next_ip() { _ip = ((addr_t *)*(_ip - 1)) + 1;} bool ip_valid() { return (*_ip >= _beg) && (*_ip < _end); } }; int count = 1; printf(" #%d %08lx %08lx\n", count++, pf_sp, pf_ip); Core_img dump(pf_sp); while (dump.ip_valid()) { printf(" #%d %p %08lx\n", count++, dump.ip(), *dump.ip()); dump.next_ip(); } sleep_forever(); } static addr_t core_pager_stack_top() { enum { STACK_SIZE = 4*1024 }; static char stack[STACK_SIZE]; return (addr_t)&stack[STACK_SIZE - sizeof(addr_t)]; } /** * Startup handler for core threads */ static void startup_handler() { Utcb *utcb = (Utcb *)CORE_PAGER_UTCB_ADDR; /* initial IP is on stack */ utcb->ip = *reinterpret_cast(utcb->sp); utcb->mtd = Mtd::EIP | Mtd::ESP; utcb->set_msg_word(0); reply((void*)core_pager_stack_top()); } static void init_core_page_fault_handler() { /* create echo EC */ enum { CPU_NO = 0, GLOBAL = false, EXC_BASE = 0 }; addr_t ec_sel = cap_selector_allocator()->alloc(); uint8_t ret = create_ec(ec_sel, __core_pd_sel, CPU_NO, CORE_PAGER_UTCB_ADDR, core_pager_stack_top(), EXC_BASE, GLOBAL); if (ret) PDBG("create_ec returned %u", ret); /* set up page-fault portal */ create_pt(PT_SEL_PAGE_FAULT, __core_pd_sel, ec_sel, Mtd(Mtd::QUAL | Mtd::ESP | Mtd::EIP), (addr_t)page_fault_handler); revoke(Obj_crd(PT_SEL_PAGE_FAULT, 0, Obj_crd::RIGHT_PT_CTRL)); /* startup portal for global core threads */ create_pt(PT_SEL_STARTUP, __core_pd_sel, ec_sel, Mtd(Mtd::EIP | Mtd::ESP), (addr_t)startup_handler); revoke(Obj_crd(PT_SEL_STARTUP, 0, Obj_crd::RIGHT_PT_CTRL)); } /************** ** Platform ** **************/ Platform::Platform() : _io_mem_alloc(core_mem_alloc()), _io_port_alloc(core_mem_alloc()), _irq_alloc(core_mem_alloc()), _vm_base(0x1000), _vm_size(0) { Hip *hip = (Hip *)__initial_sp; /* check for right API version */ if (hip->api_version != 6) nova_die(); /* register UTCB of main thread */ __main_thread_utcb = (Utcb *)(__initial_sp - get_page_size()); /* set core pd selector */ __core_pd_sel = hip->sel_exc; /* create lock used by capability allocator */ Nova::create_sm(Nova::SM_SEL_EC, __core_pd_sel, 0); /* locally map the whole I/O port range */ enum { ORDER_64K = 16 }; map_local_one_to_one(__main_thread_utcb, Io_crd(0, ORDER_64K)); /* map BDA region, console reads IO ports at BDA_VIRT_ADDR + 0x400 */ enum { BDA_PHY = 0x0U, BDA_VIRT = 0x1U, BDA_VIRT_ADDR = 0x1000U }; map_local_phys_to_virt(__main_thread_utcb, Mem_crd(BDA_PHY, 0, Rights(true, false, false)), Mem_crd(BDA_VIRT, 0, Rights(true, false, false))); /* * Now that we can access the I/O ports for comport 0, printf works... */ /* sanity checks */ if (hip->sel_exc + 3 > NUM_INITIAL_PT_RESERVED) { printf("configuration error\n"); nova_die(); } /* configure virtual address spaces */ #ifdef __x86_64__ _vm_size = 0x800000000000UL - _vm_base; #else _vm_size = 0xc0000000UL - _vm_base; #endif /* set up page fault handler for core - for debugging */ init_core_page_fault_handler(); if (verbose_boot_info) { printf("Hypervisor %s VMX\n", hip->has_feature_vmx() ? "features" : "does not feature"); printf("Hypervisor %s SVM\n", hip->has_feature_svm() ? "features" : "does not feature"); } /* initialize core allocators */ size_t num_mem_desc = (hip->hip_length - hip->mem_desc_offset) / hip->mem_desc_size; if (verbose_boot_info) printf("Hypervisor info page contains %zd memory descriptors:\n", num_mem_desc); addr_t mem_desc_base = ((addr_t)hip + hip->mem_desc_offset); /* define core's virtual address space */ addr_t virt_beg = _vm_base; addr_t virt_end = _vm_size; _core_mem_alloc.virt_alloc()->add_range(virt_beg, virt_end - virt_beg); /* exclude core image from core's virtual address allocator */ addr_t core_virt_beg = trunc_page((addr_t)&_prog_img_beg); addr_t core_virt_end = round_page((addr_t)&_prog_img_end); size_t core_size = core_virt_end - core_virt_beg; region_alloc()->remove_range(core_virt_beg, core_size); /* preserve Bios Data Area (BDA) in core's virtual address space */ region_alloc()->remove_range(BDA_VIRT_ADDR, 0x1000); /* preserve context area in core's virtual address space */ region_alloc()->remove_range(Native_config::context_area_virtual_base(), Native_config::context_area_virtual_size()); /* exclude utcb of core pager thread + empty guard pages before and after */ region_alloc()->remove_range(CORE_PAGER_UTCB_ADDR - get_page_size(), get_page_size() * 3); /* exclude utcb of echo thread + empty guard pages before and after */ region_alloc()->remove_range(Echo::ECHO_UTCB_ADDR - get_page_size(), get_page_size() * 3); /* exclude utcb of main thread and hip + empty guard pages before and after */ region_alloc()->remove_range((addr_t)__main_thread_utcb - get_page_size(), get_page_size() * 4); /* sanity checks */ addr_t check [] = { reinterpret_cast(__main_thread_utcb), CORE_PAGER_UTCB_ADDR, Echo::ECHO_UTCB_ADDR, BDA_VIRT_ADDR }; for (unsigned i = 0; i < sizeof(check) / sizeof(check[0]); i++) { if (Native_config::context_area_virtual_base() <= check[i] && check[i] < Native_config::context_area_virtual_base() + Native_config::context_area_virtual_size()) { PERR("overlapping area - [%lx, %lx) vs %lx", Native_config::context_area_virtual_base(), Native_config::context_area_virtual_base() + Native_config::context_area_virtual_size(), check[i]); nova_die(); } } /* initialize core's physical-memory and I/O memory allocator */ _io_mem_alloc.add_range(0, ~0xfffUL); Hip::Mem_desc *mem_desc = (Hip::Mem_desc *)mem_desc_base; for (unsigned i = 0; i < num_mem_desc; i++, mem_desc++) { if (mem_desc->type != Hip::Mem_desc::AVAILABLE_MEMORY) continue; if (verbose_boot_info) printf("detected physical memory: 0x%16llx - size: 0x%llx\n", mem_desc->addr, mem_desc->size); /* skip regions above 4G on 32 bit, no op on 64 bit */ if (mem_desc->addr > ~0UL) continue; addr_t base = round_page(mem_desc->addr); size_t size; /* truncate size if base+size larger then natural 32/64 bit boundary */ if (mem_desc->addr >= ~0UL - mem_desc->size + 1) size = trunc_page(~0UL - mem_desc->addr + 1); else size = trunc_page(mem_desc->addr + mem_desc->size) - base; if (verbose_boot_info) printf("use physical memory: 0x%16lx - size: 0x%zx\n", base, size); _io_mem_alloc.remove_range(base, size); _core_mem_alloc.phys_alloc()->add_range(base, size); } /* exclude all non-available memory from physical allocator */ mem_desc = (Hip::Mem_desc *)mem_desc_base; for (unsigned i = 0; i < num_mem_desc; i++, mem_desc++) { if (mem_desc->type == Hip::Mem_desc::AVAILABLE_MEMORY) continue; /* skip regions above 4G on 32 bit, no op on 64 bit */ if (mem_desc->addr > ~0UL) continue; addr_t base = trunc_page(mem_desc->addr); size_t size; /* truncate size if base+size larger then natural 32/64 bit boundary */ if (mem_desc->addr >= ~0UL - mem_desc->size + 1) size = round_page(~0UL - mem_desc->addr + 1); else size = round_page(mem_desc->addr + mem_desc->size) - base; _io_mem_alloc.add_range(base, size); _core_mem_alloc.phys_alloc()->remove_range(base, size); } /* needed as I/O memory by the VESA driver */ _io_mem_alloc.add_range(0, 0x1000); _core_mem_alloc.phys_alloc()->remove_range(0, 0x1000); /* exclude pages holding multi-boot command lines from core allocators */ mem_desc = (Hip::Mem_desc *)mem_desc_base; addr_t prev_cmd_line_page = 0, curr_cmd_line_page = 0; for (unsigned i = 0; i < num_mem_desc; i++, mem_desc++) { if (mem_desc->type != Hip::Mem_desc::MULTIBOOT_MODULE) continue; if (!mem_desc->aux) continue; curr_cmd_line_page = mem_desc->aux >> get_page_size_log2(); if (curr_cmd_line_page == prev_cmd_line_page) continue; ram_alloc()->remove_range(curr_cmd_line_page << get_page_size_log2(), get_page_size()); prev_cmd_line_page = curr_cmd_line_page; } /* preserve page following the last multi-boot command line */ ram_alloc()->remove_range((curr_cmd_line_page + 1) << get_page_size_log2(), get_page_size()); /* * From now on, it is save to use the core allocators... */ /* build ROM file system */ mem_desc = (Hip::Mem_desc *)mem_desc_base; prev_cmd_line_page = 0, curr_cmd_line_page = 0; addr_t mapped_cmd_line = 0; for (unsigned i = 0; i < num_mem_desc; i++, mem_desc++) { if (mem_desc->type != Hip::Mem_desc::MULTIBOOT_MODULE) continue; if (!mem_desc->addr || !mem_desc->size || !mem_desc->aux) continue; addr_t core_local_addr = _map_page(trunc_page(mem_desc->addr) >> get_page_size_log2(), (round_page(mem_desc->addr + mem_desc->size) - trunc_page(mem_desc->addr)) >> get_page_size_log2()); if (!core_local_addr) { PERR("could not map multi boot module"); nova_die(); } /* adjust module addr if it is not page aligned */ core_local_addr += mem_desc->addr - trunc_page(mem_desc->addr); printf("map multi-boot module: physical 0x%8lx -> [0x%8lx-0x%8lx) - ", (addr_t)mem_desc->addr, (addr_t)core_local_addr, (addr_t)(core_local_addr + mem_desc->size)); /* check if cmd line is part of the module pages, don't map it twice */ addr_t aux; if (trunc_page(mem_desc->addr) <= mem_desc->aux && mem_desc->aux < round_page(mem_desc->addr + mem_desc->size)) { aux = core_local_addr + (mem_desc->aux - mem_desc->addr); } else { curr_cmd_line_page = mem_desc->aux >> get_page_size_log2(); if (curr_cmd_line_page != prev_cmd_line_page) { mapped_cmd_line = _map_page(curr_cmd_line_page, 2); prev_cmd_line_page = curr_cmd_line_page; } aux = mapped_cmd_line + (mem_desc->aux - trunc_page(mem_desc->aux)); } const char *name = commandline_to_basename(reinterpret_cast(aux)); printf("%s\n", name); Rom_module *rom_module = new (core_mem_alloc()) Rom_module(core_local_addr, mem_desc->size, name); _rom_fs.insert(rom_module); } /* export hypervisor info page as ROM module */ _rom_fs.insert(new (core_mem_alloc()) Rom_module((addr_t)hip, get_page_size(), "hypervisor_info_page")); /* I/O port allocator (only meaningful for x86) */ _io_port_alloc.add_range(0, 0x10000); /* IRQ allocator */ _irq_alloc.add_range(0, hip->sel_gsi - 1); _gsi_base_sel = (hip->mem_desc_offset - hip->cpu_desc_offset) / hip->cpu_desc_size; /* remap main utcb to default utbc address */ if (map_local(__main_thread_utcb, (addr_t)__main_thread_utcb, (addr_t)main_thread_utcb(), 1, Rights(true, true, false))) { PERR("could not remap main threads utcb"); nova_die(); } if (verbose_boot_info) { printf(":virt_alloc: "); _core_mem_alloc.virt_alloc()->raw()->dump_addr_tree(); printf(":phys_alloc: "); _core_mem_alloc.phys_alloc()->raw()->dump_addr_tree(); printf(":io_mem_alloc: "); _io_mem_alloc.raw()->dump_addr_tree(); } } /**************************************** ** Support for core memory management ** ****************************************/ bool Core_mem_allocator::Mapped_mem_allocator::_map_local(addr_t virt_addr, addr_t phys_addr, unsigned size_log2) { map_local((Utcb *)Thread_base::myself()->utcb(), phys_addr, virt_addr, 1 << (size_log2 - get_page_size_log2()), Rights(true, true, true), true); return true; } /******************************** ** Generic platform interface ** ********************************/ void Platform::wait_for_exit() { sleep_forever(); } void Core_parent::exit(int exit_value) { }