genode/repos/base/src/lib/base/component.cc

258 lines
6.3 KiB
C++
Raw Normal View History

/*
* \brief Component bootstrap
* \author Norman Feske
* \author Christian Helmuth
* \date 2016-01-13
*/
/*
* Copyright (C) 2016-2017 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
*/
/* Genode includes */
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
#include <util/retry.h>
#include <base/component.h>
#include <base/connection.h>
#include <base/service.h>
#include <base/env.h>
#include <deprecated/env.h>
/* base-internal includes */
#include <base/internal/globals.h>
/*
* XXX remove this pointer once 'Env_deprecated' is removed
*/
static Genode::Env *env_ptr = nullptr;
/**
* Excecute pending static constructors
*
* The weak function is used for statically linked binaries. The dynamic linker
* provides the real implementation for dynamically linked components.
*/
void Genode::exec_static_constructors() __attribute__((weak));
void Genode::exec_static_constructors() { }
namespace {
using namespace Genode;
struct Env : Genode::Env
{
Genode::Entrypoint &_ep;
Genode::Parent &_parent = *env_deprecated()->parent();
/**
2020-02-19 16:26:40 +01:00
* Mutex for serializing 'session' and 'close'
*/
2020-02-19 16:26:40 +01:00
Genode::Mutex _mutex { };
/**
* Utility to used block for single signal
*/
struct Blockade
{
Parent &_parent;
Follow practices suggested by "Effective C++" The patch adjust the code of the base, base-<kernel>, and os repository. To adapt existing components to fix violations of the best practices suggested by "Effective C++" as reported by the -Weffc++ compiler argument. The changes follow the patterns outlined below: * A class with virtual functions can no longer publicly inherit base classed without a vtable. The inherited object may either be moved to a member variable, or inherited privately. The latter would be used for classes that inherit 'List::Element' or 'Avl_node'. In order to enable the 'List' and 'Avl_tree' to access the meta data, the 'List' must become a friend. * Instead of adding a virtual destructor to abstract base classes, we inherit the new 'Interface' class, which contains a virtual destructor. This way, single-line abstract base classes can stay as compact as they are now. The 'Interface' utility resides in base/include/util/interface.h. * With the new warnings enabled, all member variables must be explicitly initialized. Basic types may be initialized with '='. All other types are initialized with braces '{ ... }' or as class initializers. If basic types and non-basic types appear in a row, it is nice to only use the brace syntax (also for basic types) and align the braces. * If a class contains pointers as members, it must now also provide a copy constructor and assignment operator. In the most cases, one would make them private, effectively disallowing the objects to be copied. Unfortunately, this warning cannot be fixed be inheriting our existing 'Noncopyable' class (the compiler fails to detect that the inheriting class cannot be copied and still gives the error). For now, we have to manually add declarations for both the copy constructor and assignment operator as private class members. Those declarations should be prepended with a comment like this: /* * Noncopyable */ Thread(Thread const &); Thread &operator = (Thread const &); In the future, we should revisit these places and try to replace the pointers with references. In the presence of at least one reference member, the compiler would no longer implicitly generate a copy constructor. So we could remove the manual declaration. Issue #465
2017-12-21 15:42:15 +01:00
Genode::Signal_receiver _sig_rec { };
Genode::Signal_context _sig_ctx { };
Blockade(Parent &parent) : _parent(parent)
{
_parent.session_sigh(_sig_rec.manage(&_sig_ctx));
}
void block() { _sig_rec.wait_for_signal(); }
};
Follow practices suggested by "Effective C++" The patch adjust the code of the base, base-<kernel>, and os repository. To adapt existing components to fix violations of the best practices suggested by "Effective C++" as reported by the -Weffc++ compiler argument. The changes follow the patterns outlined below: * A class with virtual functions can no longer publicly inherit base classed without a vtable. The inherited object may either be moved to a member variable, or inherited privately. The latter would be used for classes that inherit 'List::Element' or 'Avl_node'. In order to enable the 'List' and 'Avl_tree' to access the meta data, the 'List' must become a friend. * Instead of adding a virtual destructor to abstract base classes, we inherit the new 'Interface' class, which contains a virtual destructor. This way, single-line abstract base classes can stay as compact as they are now. The 'Interface' utility resides in base/include/util/interface.h. * With the new warnings enabled, all member variables must be explicitly initialized. Basic types may be initialized with '='. All other types are initialized with braces '{ ... }' or as class initializers. If basic types and non-basic types appear in a row, it is nice to only use the brace syntax (also for basic types) and align the braces. * If a class contains pointers as members, it must now also provide a copy constructor and assignment operator. In the most cases, one would make them private, effectively disallowing the objects to be copied. Unfortunately, this warning cannot be fixed be inheriting our existing 'Noncopyable' class (the compiler fails to detect that the inheriting class cannot be copied and still gives the error). For now, we have to manually add declarations for both the copy constructor and assignment operator as private class members. Those declarations should be prepended with a comment like this: /* * Noncopyable */ Thread(Thread const &); Thread &operator = (Thread const &); In the future, we should revisit these places and try to replace the pointers with references. In the presence of at least one reference member, the compiler would no longer implicitly generate a copy constructor. So we could remove the manual declaration. Issue #465
2017-12-21 15:42:15 +01:00
Constructible<Blockade> _session_blockade { };
Env(Genode::Entrypoint &ep) : _ep(ep) { env_ptr = this; }
Genode::Parent &parent() override { return _parent; }
Genode::Cpu_session &cpu() override { return *Genode::env_deprecated()->cpu_session(); }
Genode::Region_map &rm() override { return *Genode::env_deprecated()->rm_session(); }
Genode::Pd_session &pd() override { return *Genode::env_deprecated()->pd_session(); }
Genode::Entrypoint &ep() override { return _ep; }
Genode::Cpu_session_capability cpu_session_cap() override
{
return Genode::env_deprecated()->cpu_session_cap();
}
Genode::Pd_session_capability pd_session_cap() override
{
return Genode::env_deprecated()->pd_session_cap();
}
Genode::Id_space<Parent::Client> &id_space() override
{
return Genode::env_session_id_space();
}
void reinit(Native_capability::Raw raw) override
{
Genode::env_deprecated()->reinit(raw);
}
void reinit_main_thread(Capability<Region_map> &stack_area_rm) override
{
Genode::env_deprecated()->reinit_main_thread(stack_area_rm);
}
void _block_for_session()
{
/*
* Construct blockade lazily be avoid it being used in core where
* all session requests are immediately answered.
*/
if (!_session_blockade.constructed())
_session_blockade.construct(_parent);
_session_blockade->block();
}
Session_capability session(Parent::Service_name const &name,
Parent::Client::Id id,
Parent::Session_args const &args,
Affinity const &affinity) override
{
2020-02-19 16:26:40 +01:00
Mutex::Guard guard(_mutex);
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
/*
* Since we account for the backing store for session meta data on
* the route between client and server, the session quota provided
* by the client may become successively diminished by intermediate
* components, prompting the server to deny the session request.
*/
/* extract session quota as specified by the 'Connection' */
char argbuf[Parent::Session_args::MAX_SIZE];
copy_cstring(argbuf, args.string(), sizeof(argbuf));
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
Ram_quota ram_quota = ram_quota_from_args(argbuf);
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
Cap_quota cap_quota = cap_quota_from_args(argbuf);
unsigned warn_after_attempts = 2;
for (unsigned cnt = 0;; cnt++) {
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
try {
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
Arg_string::set_arg(argbuf, sizeof(argbuf), "ram_quota",
String<32>(ram_quota).string());
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
Arg_string::set_arg(argbuf, sizeof(argbuf), "cap_quota",
String<32>(cap_quota).string());
Session_capability cap =
_parent.session(id, name, Parent::Session_args(argbuf), affinity);
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
if (cap.valid())
return cap;
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
_block_for_session();
return _parent.session_cap(id);
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
}
catch (Insufficient_ram_quota) {
ram_quota = Ram_quota { ram_quota.value + 4096 }; }
catch (Insufficient_cap_quota) {
cap_quota = Cap_quota { cap_quota.value + 4 }; }
catch (Out_of_ram) {
if (ram_quota.value > pd().avail_ram().value) {
Parent::Resource_args args(String<64>("ram_quota=", ram_quota));
_parent.resource_request(args);
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
}
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
}
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
catch (Out_of_caps) {
if (cap_quota.value > pd().avail_caps().value) {
Parent::Resource_args args(String<64>("cap_quota=", cap_quota));
_parent.resource_request(args);
}
}
base: remove Child::heap This patch improves the accounting for the backing store of session-state meta data. Originally, the session state used to be allocated by a child-local heap partition fed from the child's RAM session. However, whereas this approach was somehow practical from a runtime's (parent's) point of view, the child component could not count on the quota in its own RAM session. I.e., if the Child::heap grew at the parent side, the child's RAM session would magically diminish. This caused two problems. First, it violates assumptions of components like init that carefully manage their RAM resources (and giving most of them away their children). Second, if a child transfers most of its RAM session quota to another RAM session (like init does), the child's RAM session may actually not allow the parent's heap to grow, which is a very difficult error condition to deal with. In the new version, there is no Child::heap anymore. Instead, session states are allocated from the runtime's RAM session. In order to let children pay for these costs, the parent withdraws the local session costs from the session quota donated from the child when the child initiates a new session. Hence, in principle, all components on the route of the session request take a small bite from the session quota to pay for their local book keeping Consequently, the session quota that ends up at the server may become depleted more or less, depending on the route. In the case where the remaining quota is insufficient for the server, the server responds with 'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this patch equips the client-side 'Env::session' implementation with the ability to re-issue session requests with successively growing quota donations. For several of core's services (ROM, IO_MEM, IRQ), the default session quota has now increased by 2 KiB, which should suffice for session requests to up to 3 hops as is the common case for most run scripts. For longer routes, the retry mechanism as described above comes into effect. For the time being, we give a warning whenever the server-side quota check triggers the retry mechanism. The warning may eventually be removed at a later stage.
2017-02-19 10:31:50 +01:00
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
if (cnt == warn_after_attempts) {
warning("re-attempted ", name.string(), " session request ",
cnt, " times (args: ", Cstring(argbuf), ")");
warn_after_attempts *= 2;
}
}
}
void upgrade(Parent::Client::Id id, Parent::Upgrade_args const &args) override
{
2020-02-19 16:26:40 +01:00
Mutex::Guard guard(_mutex);
if (_parent.upgrade(id, args) == Parent::UPGRADE_PENDING)
_block_for_session();
}
void close(Parent::Client::Id id) override
{
2020-02-19 16:26:40 +01:00
Mutex::Guard guard(_mutex);
if (_parent.close(id) == Parent::CLOSE_PENDING)
_block_for_session();
}
void exec_static_constructors() override
{
Genode::exec_static_constructors();
}
};
}
namespace Genode {
struct Startup;
extern void bootstrap_component();
Env &internal_env()
{
class Env_ptr_not_initialized { };
if (!env_ptr)
throw Env_ptr_not_initialized();
return *env_ptr;
}
}
Genode::size_t Component::stack_size() __attribute__((weak));
Genode::size_t Component::stack_size() { return 64*1024; }
/*
* We need to execute the constructor of the main entrypoint from a
* class called 'Startup' as 'Startup' is a friend of 'Entrypoint'.
*/
struct Genode::Startup
{
::Env env { ep };
bool const exception_handling = (init_exception_handling(env), true);
/*
* The construction of the main entrypoint does never return.
*/
Entrypoint ep { env };
};
void Genode::bootstrap_component()
{
static Startup startup;
/* never reached */
}