genode/repos/os/src/init/service.h

154 lines
3.4 KiB
C
Raw Normal View History

/*
* \brief Services as targeted by session routes
* \author Norman Feske
* \date 2017-03-03
*/
/*
* Copyright (C) 2017 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
*/
#ifndef _SRC__INIT__SERVICE_H_
#define _SRC__INIT__SERVICE_H_
/* Genode includes */
#include <base/service.h>
#include <base/child.h>
namespace Init {
class Abandonable;
class Parent_service;
class Routed_service;
class Forwarded_service;
}
class Init::Abandonable
{
private:
bool _abandoned = false;
public:
void abandon() { _abandoned = true; }
bool abandoned() const { return _abandoned; }
};
class Init::Parent_service : public Genode::Parent_service, public Abandonable
{
private:
Registry<Parent_service>::Element _reg_elem;
public:
Parent_service(Registry<Parent_service> &registry, Env &env,
Service::Name const &name)
:
Genode::Parent_service(env, name), _reg_elem(registry, *this)
{ }
};
/**
* Init-specific representation of a child service
*/
class Init::Routed_service : public Async_service, public Abandonable
{
public:
typedef Child_policy::Name Child_name;
struct Ram_accessor
{
virtual Ram_session &ram() = 0;
virtual Ram_session_capability ram_cap() const = 0;
};
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
struct Pd_accessor
{
virtual Pd_session &pd() = 0;
virtual Pd_session_capability pd_cap() const = 0;
};
private:
Child_name _child_name;
Ram_accessor &_ram_accessor;
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
Pd_accessor &_pd_accessor;
Session_state::Factory &_factory;
Registry<Routed_service>::Element _registry_element;
public:
/**
* Constructor
*
* \param services registry of all services provides by children
* \param child_name child name of server, used for session routing
*
* The other arguments correspond to the arguments of 'Async_service'.
*/
Routed_service(Registry<Routed_service> &services,
Child_name const &child_name,
Ram_accessor &ram_accessor,
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
Pd_accessor &pd_accessor,
Id_space<Parent::Server> &server_id_space,
Session_state::Factory &factory,
Service::Name const &name,
Wakeup &wakeup)
:
Async_service(name, server_id_space, factory, wakeup),
_child_name(child_name),
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
_ram_accessor(ram_accessor), _pd_accessor(pd_accessor),
_factory(factory), _registry_element(services, *this)
{ }
Child_name const &child_name() const { return _child_name; }
Session_state::Factory &factory() { return _factory; }
/**
* Ram_transfer::Account interface
*/
void transfer(Ram_session_capability to, Ram_quota amount) override
{
if (to.valid()) _ram_accessor.ram().transfer_quota(to, amount);
}
/**
* Ram_transfer::Account interface
*/
Ram_session_capability cap(Ram_quota) const override
{
return _ram_accessor.ram_cap();
}
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
/**
* Cap_transfer::Account interface
*/
void transfer(Pd_session_capability to, Cap_quota amount) override
{
if (to.valid()) _pd_accessor.pd().transfer_quota(to, amount);
}
/**
* Cap_transfer::Account interface
*/
Pd_session_capability cap(Cap_quota) const override
{
return _pd_accessor.pd_cap();
}
};
#endif /* _SRC__INIT__SERVICE_H_ */