dhall-haskell/dhall-json/src/Dhall/JSON.hs

1126 lines
41 KiB
Haskell

{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RecordWildCards #-}
{-| This library only exports a single `dhallToJSON` function for translating a
Dhall syntax tree to a JSON syntax tree (i.e. a `Value`) for the @aeson@
library
NOTE: The @yaml@ library uses the same `Value` type to represent YAML
files, so you can use this to convert Dhall expressions to YAML, too
See the @dhall@ package if you would like to transform Dhall source code
into a Dhall syntax tree. Similarly, see the @aeson@ package if you would
like to translate a JSON syntax tree into JSON.
This package also provides @dhall-to-json@ and @dhall-to-yaml@ executables
which you can use to compile Dhall source code directly to JSON or YAML for
your convenience
Not all Dhall expressions can be converted to JSON since JSON is not a
programming language. The only things you can convert are:
* @Bool@s
* @Natural@s
* @Integer@s
* @Double@s
* @Text@
* @List@s
* @Optional@ values
* unions
* records
Dhall @Bool@s translate to JSON bools:
> $ dhall-to-json <<< 'True'
> true
> $ dhall-to-json <<< 'False'
> false
Dhall numbers translate to JSON numbers:
> $ dhall-to-json <<< '+2'
> 2
> $ dhall-to-json <<< '2'
> 2
> $ dhall-to-json <<< '2.3'
> 2.3
Dhall @Text@ translates to JSON text:
> $ dhall-to-json <<< '"ABC"'
> "ABC"
Dhall @List@s translate to JSON lists:
> $ dhall-to-json <<< '[1, 2, 3] : List Natural'
> [
> 1,
> 2,
> 3
> ]
Dhall @Optional@ values translate to @null@ if absent and the unwrapped
value otherwise:
> $ dhall-to-json <<< 'None Natural'
> null
> $ dhall-to-json <<< 'Some 1'
> 1
Dhall records translate to JSON records:
> $ dhall-to-json <<< '{ foo = 1, bar = True }'
> {
> "bar": true,
> "foo": 1
> }
Dhall unions translate to the wrapped value:
> $ dhall-to-json <<< "< Left : Natural | Right : Natural>.Left 2"
> 2
> $ cat config
> let MyType =
> < Person : { age : Natural, name : Text } | Place : { location : Text } >
>
> in [ MyType.Person { age = 47, name = "John" }
> , MyType.Place { location = "North Pole" }
> , MyType.Place { location = "Sahara Desert" }
> , MyType.Person { age = 35, name = "Alice" }
> ]
> $ dhall-to-json <<< "./config"
> [
> {
> "age": 47,
> "name": "John"
> },
> {
> "location": "North Pole"
> },
> {
> "location": "Sahara Desert"
> },
> {
> "age": 35,
> "name": "Alice"
> }
> ]
You can preserve the name of the alternative if you wrap the value in a
record with three fields:
* @contents@: The union literal that you want to preserve the tag of
* @field@: the name of the field that will store the name of the
alternative
* @nesting@: A value of type @\< Inline | Nested : Text \>@.
If @nesting@ is set to @Inline@ and the union literal stored in @contents@
contains a record then the name of the alternative is stored inline within
the same record. For example, this code:
> let Example = < Left : { foo : Natural } | Right : { bar : Bool } >
>
> let Nesting = < Inline | Nested : Text >
>
> in { field = "name"
> , nesting = Nesting.Inline
> , contents = Example.Left { foo = 2 }
> }
... produces this JSON:
> {
> "foo": 2,
> "name": "Left"
> }
If @nesting@ is set to @Nested nestedField@ then the union is stored
underneath a field named @nestedField@. For example, this code:
> let Example = < Left : { foo : Natural } | Right : { bar : Bool } >
>
> let Nesting = < Inline | Nested : Text >
>
> in { field = "name"
> , nesting = Nesting.Nested "value"
> , contents = Example.Left { foo = 2 }
> }
... produces this JSON:
> {
> "name": "Left",
> "value": {
> "foo": 2
> }
> }
You can also translate Dhall expressions encoding weakly-typed JSON
(see: <https://prelude.dhall-lang.org/JSON/Type>):
> $ cat ./example.dhall
> let JSON = https://prelude.dhall-lang.org/JSON/package.dhall
>
> in JSON.object
> [ { mapKey = "foo", mapValue = JSON.null }
> , { mapKey =
> "bar"
> , mapValue =
> JSON.array [ JSON.number 1.0, JSON.bool True ]
> }
> ]
By default, the fields that are evaluated to @null@ will be removed,
but here we're preserving them with the @--preserveNull@ flag.
> $ dhall-to-json --preserveNull <<< './example.dhall'
> {
> "bar": [
> 1,
> true
> ],
> "foo": null
> }
Also, all Dhall expressions are normalized before translation to JSON:
> $ dhall-to-json <<< "True == False"
> false
-}
module Dhall.JSON (
-- * Dhall to JSON
dhallToJSON
, omitNull
, omitEmpty
, parsePreservationAndOmission
, Conversion(..)
, convertToHomogeneousMaps
, parseConversion
, SpecialDoubleMode(..)
, handleSpecialDoubles
, codeToValue
-- * Exceptions
, CompileError(..)
) where
import Control.Applicative (empty, (<|>))
import Control.Monad (guard)
import Control.Exception (Exception, throwIO)
import Data.Aeson (Value(..), ToJSON(..))
import Data.Maybe (fromMaybe)
import Data.Monoid ((<>), mempty)
import Data.Text (Text)
import Data.Text.Prettyprint.Doc (Pretty)
import Data.Void (Void)
import Dhall.Core (Binding(..), DhallDouble(..), Expr)
import Dhall.Import (SemanticCacheMode(..))
import Dhall.Map (Map)
import Dhall.JSON.Util (pattern V)
import Options.Applicative (Parser)
import Prelude hiding (getContents)
import qualified Data.Aeson as Aeson
import qualified Data.Foldable as Foldable
import qualified Data.HashMap.Strict as HashMap
import qualified Data.List
import qualified Data.Map
import qualified Data.Ord
import qualified Data.Text
import qualified Data.Text.Prettyprint.Doc.Render.Text as Pretty
import qualified Data.Vector as Vector
import qualified Dhall.Core as Core
import qualified Dhall.Import
import qualified Dhall.Map
import qualified Dhall.Optics
import qualified Dhall.Parser
import qualified Dhall.Pretty
import qualified Dhall.TypeCheck
import qualified Dhall.Util
import qualified Options.Applicative
import qualified System.FilePath
{-| This is the exception type for errors that might arise when translating
Dhall to JSON
Because the majority of Dhall language features do not translate to JSON
this just returns the expression that failed
-}
data CompileError
= Unsupported (Expr Void Void)
| SpecialDouble Double
| BareNone
| InvalidInlineContents (Expr Void Void) (Expr Void Void)
instance Show CompileError where
show BareNone =
Data.Text.unpack $
_ERROR <> ": ❰None❱ is not valid on its own \n\
\ \n\
\Explanation: The conversion to JSON/YAML does not accept ❰None❱ in isolation as \n\
\a valid way to represent ❰null❱. In Dhall, ❰None❱ is a function whose input is \n\
\a type and whose output is an ❰Optional❱ of that type. \n\
\ \n\
\For example: \n\
\ \n\
\ \n\
\ ┌─────────────────────────────────┐ ❰None❱ is a function whose result is \n\
\ │ None : ∀(a : Type) → Optional a │ an ❰Optional❱ value, but the function \n\
\ └─────────────────────────────────┘ itself is not a valid ❰Optional❱ value \n\
\ \n\
\ \n\
\ ┌─────────────────────────────────┐ ❰None Natural❱ is a valid ❰Optional❱ \n\
\ │ None Natural : Optional Natural │ value (an absent ❰Natural❱ number in \n\
\ └─────────────────────────────────┘ this case) \n\
\ \n\
\ \n\
\ \n\
\The conversion to JSON/YAML only translates the fully applied form to ❰null❱. "
show (SpecialDouble n) =
Data.Text.unpack $
_ERROR <> ": " <> special <> " disallowed in JSON \n\
\ \n\
\Explanation: The JSON standard does not define a canonical way to encode \n\
\❰NaN❱/❰Infinity❱/❰-Infinity❱. You can fix this error by either: \n\
\ \n\
\● Using ❰dhall-to-yaml❱ instead of ❰dhall-to-json❱, since YAML does support \n\
\ ❰NaN❱/❰Infinity❱/❰-Infinity❱ \n\
\ \n\
\● Enabling the ❰--approximate-special-doubles❱ flag which will encode ❰NaN❱ as \n\
\ ❰null❱, ❰Infinity❱ as the maximum ❰Double❱, and ❰-Infinity❱ as the minimum \n\
\❰Double❱ \n\
\ \n\
\● See if there is a way to remove ❰NaN❱/❰Infinity❱/❰-Infinity❱ from the \n\
\ expression that you are converting to JSON "
where
special = Data.Text.pack (show n)
show (Unsupported e) =
Data.Text.unpack $
_ERROR <> ": Cannot translate to JSON \n\
\ \n\
\Explanation: Only primitive values, records, unions, ❰List❱s, and ❰Optional❱ \n\
\values can be translated from Dhall to JSON \n\
\ \n\
\The following Dhall expression could not be translated to JSON: \n\
\ \n\
\" <> insert e
show (InvalidInlineContents record alternativeContents) =
Data.Text.unpack $
_ERROR <> ": Union value is not compatible with ❰Inline❱ nesting. \n\
\ \n\
\Explanation: You can use the ❰Inline❱ nesting to compactly encode a union while \n\
\preserving the name of the alternative. However the alternative must either be \n\
\empty or contain a record value. \n\
\ \n\
\For example: \n\
\ \n\
\ \n\
\ ┌─────────────────────────────────────────────────┐ \n\
\ │ let Example = < Empty | Record : { x : Bool } > │ \n\
\ │ │ \n\
\ │ let Nesting = < Inline | Nested : Text > │ \n\
\ │ │ \n\
\ │ in { field = \"name\"\n\
\ │ , nesting = Nesting.Inline │ \n\
\ │ , contents = Example.Empty │ An empty alternative \n\
\ │ } │ is ok. \n\
\ └─────────────────────────────────────────────────┘ \n\
\ \n\
\ \n\
\... is converted to this JSON: \n\
\ \n\
\ \n\
\ ┌─────────────────────┐ \n\
\ │ { \"name\": \"Empty\" } │ \n\
\ └─────────────────────┘ \n\
\ \n\
\ \n\
\ ┌──────────────────────────────────────────────┐ \n\
\ │ ... │ \n\
\ │ │ \n\
\ │ in { field = \"name\"\n\
\ │ , nesting = Nesting.Inline │ \n\
\ │ , contents = Example.Record { x = True } │ An alternative containing \n\
\ │ } │ a record value is ok. \n\
\ └──────────────────────────────────────────────┘ \n\
\ \n\
\ \n\
\... is converted to this JSON: \n\
\ \n\
\ \n\
\ ┌─────────────────────────────────┐ \n\
\ │ { \"name\": \"Record\", \"x\": true } │ \n\
\ └─────────────────────────────────┘ \n\
\ \n\
\ \n\
\This isn't valid: \n\
\ \n\
\ \n\
\ ┌──────────────────────────────────────────┐ \n\
\ │ let Example = < Foo : Bool > │ \n\
\ │ │ \n\
\ │ let Nesting = < Inline | Nested : Text > │ \n\
\ │ │ \n\
\ │ in { field = \"name\"\n\
\ │ , nesting = Nesting.Inline │ \n\
\ │ , contents = Example.Foo True │ ❰True❱ is not a record \n\
\ │ } │ \n\
\ └──────────────────────────────────────────┘ \n\
\ \n\
\ \n\
\The following Dhall expression could not be translated to JSON: \n\
\ \n\
\" <> insert record <> " \n\
\ \n\
\... because \n\
\ \n\
\" <> insert alternativeContents <> " \n\
\ \n\
\... is not a record."
_ERROR :: Data.Text.Text
_ERROR = Dhall.Util._ERROR
insert :: Pretty a => a -> Text
insert = Pretty.renderStrict . Dhall.Pretty.layout . Dhall.Util.insert
instance Exception CompileError
{-| Convert a Dhall expression to the equivalent JSON expression
>>> :set -XOverloadedStrings
>>> :set -XOverloadedLists
>>> import Core
>>> dhallToJSON (RecordLit [("foo", IntegerLit 1), ("bar", TextLit "ABC")])
Right (Object (fromList [("foo",Number 1.0),("bar",String "ABC")]))
>>> fmap Aeson.encode it
Right "{\"foo\":1,\"bar\":\"ABC\"}"
-}
dhallToJSON
:: Expr s Void
-> Either CompileError Value
dhallToJSON e0 = loop (Core.alphaNormalize (Core.normalize e0))
where
loop e = case e of
Core.BoolLit a -> return (toJSON a)
Core.NaturalLit a -> return (toJSON a)
Core.IntegerLit a -> return (toJSON a)
Core.DoubleLit (DhallDouble a) -> return (toJSON a)
Core.TextLit (Core.Chunks [] a) -> do
return (toJSON a)
Core.ListLit _ a -> do
a' <- traverse loop a
return (toJSON a')
Core.Some a -> do
a' <- loop a
return (toJSON a')
Core.App Core.None _ -> do
return Aeson.Null
-- Provide a nicer error message for a common user mistake.
--
-- See: https://github.com/dhall-lang/dhall-lang/issues/492
Core.None -> do
Left BareNone
Core.RecordLit a ->
case toOrderedList a of
[ ( "contents"
, contents
)
, ( "field"
, Core.TextLit
(Core.Chunks [] field)
)
, ( "nesting"
, Core.App
(Core.Field
(Core.Union
[ ("Inline", mInlineType)
, ("Nested", Just Core.Text)
]
)
"Nested"
)
(Core.TextLit
(Core.Chunks [] nestedField)
)
)
] | all (== Core.Record []) mInlineType
, Just (alternativeName, mExpr) <- getContents contents -> do
contents' <- case mExpr of
Just expr -> loop expr
Nothing -> return Aeson.Null
let taggedValue =
Data.Map.fromList
[ ( field
, toJSON alternativeName
)
, ( nestedField
, contents'
)
]
return (Aeson.toJSON taggedValue)
[ ( "contents"
, contents
)
, ( "field"
, Core.TextLit
(Core.Chunks [] field)
)
, ( "nesting"
, nesting
)
] | isInlineNesting nesting
, Just (alternativeName, mExpr) <- getContents contents -> do
kvs0 <- case mExpr of
Just (Core.RecordLit kvs) -> return kvs
Just alternativeContents ->
Left (InvalidInlineContents e alternativeContents)
Nothing -> return mempty
let name = Core.TextLit (Core.Chunks [] alternativeName)
let kvs1 = Dhall.Map.insert field name kvs0
loop (Core.RecordLit kvs1)
_ -> do
a' <- traverse loop a
return (Aeson.toJSON (Dhall.Map.toMap a'))
Core.App (Core.Field (Core.Union _) _) b -> loop b
Core.Field (Core.Union _) k -> return (Aeson.toJSON k)
Core.Lam _ (Core.Const Core.Type)
(Core.Lam _
(Core.Record
[ ("array" , Core.Pi _ (Core.App Core.List (V 0)) (V 1))
, ("bool" , Core.Pi _ Core.Bool (V 1))
, ("null" , V 0)
, ("number", Core.Pi _ Core.Double (V 1))
, ("object", Core.Pi _ (Core.App Core.List (Core.Record [ ("mapKey", Core.Text), ("mapValue", V 0)])) (V 1))
, ("string", Core.Pi _ Core.Text (V 1))
]
)
value
) -> do
let outer (Core.Field (V 0) "null") = do
return Aeson.Null
outer (Core.App (Core.Field (V 0) "bool") (Core.BoolLit b)) = do
return (Aeson.Bool b)
outer (Core.App (Core.Field (V 0) "array") (Core.ListLit _ xs)) = do
ys <- traverse outer (Foldable.toList xs)
return (Aeson.Array (Vector.fromList ys))
outer (Core.App (Core.Field (V 0) "object") (Core.ListLit _ xs)) = do
let inner (Core.RecordLit [("mapKey", Core.TextLit (Core.Chunks [] mapKey)), ("mapValue", mapExpression)]) = do
mapValue <- outer mapExpression
return (mapKey, mapValue)
inner _ = Left (Unsupported e)
ys <- traverse inner (Foldable.toList xs)
return (Aeson.Object (HashMap.fromList ys))
outer (Core.App (Core.Field (V 0) "number") (Core.DoubleLit (DhallDouble n))) = do
return (Aeson.toJSON n)
outer (Core.App (Core.Field (V 0) "string") (Core.TextLit (Core.Chunks [] text))) = do
return (toJSON text)
outer _ = Left (Unsupported e)
outer value
_ -> Left (Unsupported e)
getContents :: Expr s Void -> Maybe (Text, Maybe (Expr s Void))
getContents (Core.App
(Core.Field
_
alternativeName
)
expression
) = Just (alternativeName, Just expression)
getContents (Core.Field _ alternativeName) = Just (alternativeName, Nothing)
getContents _ = Nothing
isInlineNesting :: Expr s Void -> Bool
isInlineNesting (Core.App
(Core.Field
(Core.Union
[ ("Inline", Just (Core.Record []))
, ("Nested", Just Core.Text)
]
)
"Inline"
)
(Core.RecordLit [])
) = True
isInlineNesting (Core.Field
(Core.Union
[ ("Inline", Nothing)
, ("Nested", Just Core.Text)
]
)
"Inline"
) = True
isInlineNesting _ = False
toOrderedList :: Ord k => Map k v -> [(k, v)]
toOrderedList =
Data.List.sortBy (Data.Ord.comparing fst)
. Dhall.Map.toList
-- | Omit record fields that are @null@
omitNull :: Value -> Value
omitNull (Object object) = Object fields
where
fields =HashMap.filter (/= Null) (fmap omitNull object)
omitNull (Array array) =
Array (fmap omitNull array)
omitNull (String string) =
String string
omitNull (Number number) =
Number number
omitNull (Bool bool) =
Bool bool
omitNull Null =
Null
{-| Omit record fields that are @null@, arrays and records whose transitive
fields are all null
-}
omitEmpty :: Value -> Value
omitEmpty (Object object) =
if null fields then Null else Object fields
where
fields = HashMap.filter (/= Null) (fmap omitEmpty object)
omitEmpty (Array array) =
if null elems then Null else Array elems
where
elems = Vector.filter (/= Null) (fmap omitEmpty array)
omitEmpty (String string) =
String string
omitEmpty (Number number) =
Number number
omitEmpty (Bool bool) =
Bool bool
omitEmpty Null =
Null
-- | Parser for command-line options related to omitting fields
parseOmission :: Parser (Value -> Value)
parseOmission =
Options.Applicative.flag'
omitEmpty
( Options.Applicative.long "omit-empty"
<> Options.Applicative.help "Omit record fields that are null or empty records"
)
-- | Parser for command-line options related to preserving null fields.
parseNullPreservation :: Parser (Value -> Value)
parseNullPreservation =
Options.Applicative.flag
omitNull
id
( Options.Applicative.long "preserve-null"
<> Options.Applicative.help "Preserve record fields that are null"
)
-- | Combines parsers for command-line options related to preserving & omitting null fields.
parsePreservationAndOmission :: Parser (Value -> Value)
parsePreservationAndOmission = parseOmission <|> parseNullPreservation
{-| Specify whether or not to convert association lists of type
@List { mapKey: Text, mapValue : v }@ to records
-}
data Conversion
= NoConversion
| Conversion { mapKey :: Text, mapValue :: Text }
{-| Convert association lists to homogeneous maps
This converts an association list of the form:
> [ { mapKey = k0, mapValue = v0 }, { mapKey = k1, mapValue = v1 } ]
... to a record of the form:
> { k0 = v0, k1 = v1 }
-}
convertToHomogeneousMaps :: Conversion -> Expr s Void -> Expr s Void
convertToHomogeneousMaps NoConversion e0 = e0
convertToHomogeneousMaps (Conversion {..}) e0 = loop (Core.normalize e0)
where
loop e = case e of
Core.Const a ->
Core.Const a
Core.Var v ->
Core.Var v
{- Minor hack: Don't descend into lambda, since the only thing it can
possibly encode is a Boehm-Berarducci-encoded JSON value. In such a
case we do *not* want to perform this rewrite since it will
interfere with decoding the value.
-}
Core.Lam a b c ->
Core.Lam a b c
Core.Pi a b c ->
Core.Pi a b' c'
where
b' = loop b
c' = loop c
Core.App a b ->
Core.App a' b'
where
a' = loop a
b' = loop b
Core.Let (Binding src0 a src1 b src2 c) d ->
Core.Let (Binding src0 a src1 b' src2 c') d'
where
b' = fmap (fmap loop) b
c' = loop c
d' = loop d
Core.Annot a b ->
Core.Annot a' b'
where
a' = loop a
b' = loop b
Core.Bool ->
Core.Bool
Core.BoolLit a ->
Core.BoolLit a
Core.BoolAnd a b ->
Core.BoolAnd a' b'
where
a' = loop a
b' = loop b
Core.BoolOr a b ->
Core.BoolOr a' b'
where
a' = loop a
b' = loop b
Core.BoolEQ a b ->
Core.BoolEQ a' b'
where
a' = loop a
b' = loop b
Core.BoolNE a b ->
Core.BoolNE a' b'
where
a' = loop a
b' = loop b
Core.BoolIf a b c ->
Core.BoolIf a' b' c'
where
a' = loop a
b' = loop b
c' = loop c
Core.Natural ->
Core.Natural
Core.NaturalLit a ->
Core.NaturalLit a
Core.NaturalFold ->
Core.NaturalFold
Core.NaturalBuild ->
Core.NaturalBuild
Core.NaturalIsZero ->
Core.NaturalIsZero
Core.NaturalEven ->
Core.NaturalEven
Core.NaturalOdd ->
Core.NaturalOdd
Core.NaturalToInteger ->
Core.NaturalToInteger
Core.NaturalShow ->
Core.NaturalShow
Core.NaturalSubtract ->
Core.NaturalSubtract
Core.NaturalPlus a b ->
Core.NaturalPlus a' b'
where
a' = loop a
b' = loop b
Core.NaturalTimes a b ->
Core.NaturalTimes a' b'
where
a' = loop a
b' = loop b
Core.Integer ->
Core.Integer
Core.IntegerLit a ->
Core.IntegerLit a
Core.IntegerClamp ->
Core.IntegerClamp
Core.IntegerNegate ->
Core.IntegerNegate
Core.IntegerShow ->
Core.IntegerShow
Core.IntegerToDouble ->
Core.IntegerToDouble
Core.Double ->
Core.Double
Core.DoubleLit a ->
Core.DoubleLit a
Core.DoubleShow ->
Core.DoubleShow
Core.Text ->
Core.Text
Core.TextLit (Core.Chunks a b) ->
Core.TextLit (Core.Chunks a' b)
where
a' = fmap (fmap loop) a
Core.TextAppend a b ->
Core.TextAppend a' b'
where
a' = loop a
b' = loop b
Core.TextShow ->
Core.TextShow
Core.List ->
Core.List
Core.ListLit a b ->
case transform of
Just c -> loop c
Nothing -> Core.ListLit a' b'
where
elements = Foldable.toList b
toKeyValue :: Expr s Void -> Maybe (Text, Expr s Void)
toKeyValue (Core.RecordLit m) = do
guard (Foldable.length m == 2)
key <- Dhall.Map.lookup mapKey m
value <- Dhall.Map.lookup mapValue m
keyText <- case key of
Core.TextLit (Core.Chunks [] keyText) ->
return keyText
Core.Field (Core.Union _) keyText ->
return keyText
_ ->
empty
return (keyText, value)
toKeyValue _ = do
empty
transform =
case elements of
[] ->
case a of
Just (Core.Record m) -> do
guard (Foldable.length m == 2)
guard (Dhall.Map.member mapKey m)
guard (Dhall.Map.member mapValue m)
return (Core.RecordLit mempty)
_ -> do
empty
_ -> do
keyValues <- traverse toKeyValue elements
let recordLiteral =
Dhall.Map.fromList keyValues
return (Core.RecordLit recordLiteral)
a' = fmap loop a
b' = fmap loop b
Core.ListAppend a b ->
Core.ListAppend a' b'
where
a' = loop a
b' = loop b
Core.ListBuild ->
Core.ListBuild
Core.ListFold ->
Core.ListFold
Core.ListLength ->
Core.ListLength
Core.ListHead ->
Core.ListHead
Core.ListLast ->
Core.ListLast
Core.ListIndexed ->
Core.ListIndexed
Core.ListReverse ->
Core.ListReverse
Core.Optional ->
Core.Optional
Core.Some a ->
Core.Some a'
where
a' = loop a
Core.None ->
Core.None
Core.OptionalFold ->
Core.OptionalFold
Core.OptionalBuild ->
Core.OptionalBuild
Core.Record a ->
Core.Record a'
where
a' = fmap loop a
Core.RecordLit a ->
Core.RecordLit a'
where
a' = fmap loop a
Core.Union a ->
Core.Union a'
where
a' = fmap (fmap loop) a
Core.Combine a b ->
Core.Combine a' b'
where
a' = loop a
b' = loop b
Core.CombineTypes a b ->
Core.CombineTypes a' b'
where
a' = loop a
b' = loop b
Core.Prefer a b ->
Core.Prefer a' b'
where
a' = loop a
b' = loop b
Core.RecordCompletion a b ->
Core.RecordCompletion a' b'
where
a' = loop a
b' = loop b
Core.Merge a b c ->
Core.Merge a' b' c'
where
a' = loop a
b' = loop b
c' = fmap loop c
Core.ToMap a b ->
Core.ToMap a' b'
where
a' = loop a
b' = fmap loop b
Core.Field a b ->
Core.Field a' b
where
a' = loop a
Core.Project a b ->
Core.Project a' b
where
a' = loop a
Core.Assert a ->
Core.Assert a'
where
a' = loop a
Core.Equivalent a b ->
Core.Equivalent a' b'
where
a' = loop a
b' = loop b
Core.ImportAlt a b ->
Core.ImportAlt a' b'
where
a' = loop a
b' = loop b
Core.Note a b ->
Core.Note a b'
where
b' = loop b
Core.Embed a ->
Core.Embed a
-- | Parser for command-line options related to homogeneous map support
parseConversion :: Parser Conversion
parseConversion =
conversion
<|> noConversion
where
conversion = Conversion <$> parseKeyField <*> parseValueField
where
parseKeyField =
Options.Applicative.strOption
( Options.Applicative.long "key"
<> Options.Applicative.help "Reserved key field name for association lists"
<> Options.Applicative.value "mapKey"
<> Options.Applicative.showDefaultWith Data.Text.unpack
)
parseValueField =
Options.Applicative.strOption
( Options.Applicative.long "value"
<> Options.Applicative.help "Reserved value field name for association lists"
<> Options.Applicative.value "mapValue"
<> Options.Applicative.showDefaultWith Data.Text.unpack
)
noConversion =
Options.Applicative.flag'
NoConversion
( Options.Applicative.long "no-maps"
<> Options.Applicative.help "Disable conversion of association lists to homogeneous maps"
)
-- | This option specifies how to encode @NaN@\/@Infinity@\/@-Infinity@
data SpecialDoubleMode
= UseYAMLEncoding
-- ^ YAML natively supports @NaN@\/@Infinity@\/@-Infinity@
| ForbidWithinJSON
-- ^ Forbid @NaN@\/@Infinity@\/@-Infinity@ because JSON doesn't support them
| ApproximateWithinJSON
-- ^ Encode @NaN@\/@Infinity@\/@-Infinity@ as
-- @null@\/@1.7976931348623157e308@\/@-1.7976931348623157e308@,
-- respectively
{-| Pre-process an expression containing @NaN@\/@Infinity@\/@-Infinity@,
handling them as specified according to the `SpecialDoubleMode`
-}
handleSpecialDoubles
:: SpecialDoubleMode -> Expr s Void -> Either CompileError (Expr s Void)
handleSpecialDoubles specialDoubleMode =
Dhall.Optics.rewriteMOf Core.subExpressions rewrite
where
rewrite =
case specialDoubleMode of
UseYAMLEncoding -> useYAMLEncoding
ForbidWithinJSON -> forbidWithinJSON
ApproximateWithinJSON -> approximateWithinJSON
useYAMLEncoding (Core.DoubleLit (DhallDouble n))
| isInfinite n && 0 < n =
return (Just (Core.TextLit (Core.Chunks [] "inf")))
| isInfinite n && n < 0 =
return (Just (Core.TextLit (Core.Chunks [] "-inf")))
| isNaN n =
return (Just (Core.TextLit (Core.Chunks [] "nan")))
useYAMLEncoding _ =
return Nothing
forbidWithinJSON (Core.DoubleLit (DhallDouble n))
| isInfinite n || isNaN n =
Left (SpecialDouble n)
forbidWithinJSON _ =
return Nothing
approximateWithinJSON (Core.DoubleLit (DhallDouble n))
| isInfinite n && n > 0 =
return (Just (Core.DoubleLit (DhallDouble 1.7976931348623157e308)))
| isInfinite n && n < 0 =
return (Just (Core.DoubleLit (DhallDouble (-1.7976931348623157e308))))
-- Do nothing for @NaN@, which already encodes to @null@
approximateWithinJSON _ =
return Nothing
{-| Convert a piece of Text carrying a Dhall inscription to an equivalent JSON Value
>>> :set -XOverloadedStrings
>>> import Core
>>> Dhall.JSON.codeToValue "(stdin)" "{ a = 1 }"
>>> Object (fromList [("a",Number 1.0)])
-}
codeToValue
:: Conversion
-> SpecialDoubleMode
-> Maybe FilePath -- ^ The source file path. If no path is given, imports
-- are resolved relative to the current directory.
-> Text -- ^ Input text.
-> IO Value
codeToValue conversion specialDoubleMode mFilePath code = do
parsedExpression <- Core.throws (Dhall.Parser.exprFromText (fromMaybe "(stdin)" mFilePath) code)
let rootDirectory = case mFilePath of
Nothing -> "."
Just fp -> System.FilePath.takeDirectory fp
resolvedExpression <- Dhall.Import.loadRelativeTo rootDirectory UseSemanticCache parsedExpression
_ <- Core.throws (Dhall.TypeCheck.typeOf resolvedExpression)
let convertedExpression =
convertToHomogeneousMaps conversion resolvedExpression
specialDoubleExpression <- Core.throws (handleSpecialDoubles specialDoubleMode convertedExpression)
case dhallToJSON specialDoubleExpression of
Left err -> Control.Exception.throwIO err
Right json -> return json