dhall-haskell/dhall/src/Dhall.hs

1692 lines
50 KiB
Haskell

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TupleSections #-}
{-| Please read the "Dhall.Tutorial" module, which contains a tutorial explaining
how to use the language, the compiler, and this library
-}
module Dhall
(
-- * Input
input
, inputWithSettings
, inputFile
, inputFileWithSettings
, inputExpr
, inputExprWithSettings
, rootDirectory
, sourceName
, startingContext
, normalizer
, standardVersion
, defaultInputSettings
, InputSettings
, defaultEvaluateSettings
, EvaluateSettings
, HasEvaluateSettings
, detailed
-- * Types
, Type(..)
, RecordType(..)
, UnionType(..)
, InputType(..)
, Interpret(..)
, InvalidType(..)
, auto
, genericAuto
, InterpretOptions(..)
, defaultInterpretOptions
, bool
, natural
, integer
, scientific
, double
, lazyText
, strictText
, maybe
, sequence
, list
, vector
, unit
, string
, pair
, record
, field
, union
, constructor
, GenericInterpret(..)
, GenericInject(..)
, Inject(..)
, inject
, RecordInputType(..)
, inputFieldWith
, inputField
, inputRecord
, UnionInputType(..)
, inputConstructorWith
, inputConstructor
, inputUnion
, (>|<)
-- * Miscellaneous
, rawInput
, (>$<)
, (>*<)
-- * Re-exports
, Natural
, Seq
, Text
, Vector
, Generic
) where
import Control.Applicative (empty, liftA2, (<|>), Alternative)
import Control.Exception (Exception)
import Control.Monad.Trans.State.Strict
import Control.Monad (guard)
import Data.Coerce (coerce)
import Data.Functor.Contravariant (Contravariant(..), (>$<), Op(..))
import Data.Functor.Contravariant.Divisible (Divisible(..), divided)
import Data.Monoid ((<>))
import Data.Scientific (Scientific)
import Data.Sequence (Seq)
import Data.Text (Text)
import Data.Typeable (Typeable)
import Data.Vector (Vector)
import Data.Word (Word8, Word16, Word32, Word64)
import Dhall.Binary (StandardVersion(..))
import Dhall.Core (Expr(..), Chunks(..))
import Dhall.Import (Imported(..))
import Dhall.Parser (Src(..))
import Dhall.TypeCheck (DetailedTypeError(..), TypeError, X)
import GHC.Generics
import Lens.Family (LensLike', set, view)
import Numeric.Natural (Natural)
import Prelude hiding (maybe, sequence)
import System.FilePath (takeDirectory)
import qualified Control.Applicative
import qualified Control.Exception
import qualified Control.Monad.Trans.State.Strict as State
import qualified Data.Foldable
import qualified Data.Functor.Compose
import qualified Data.Functor.Product
import qualified Data.Semigroup
import qualified Data.Scientific
import qualified Data.Sequence
import qualified Data.Set
import qualified Data.Text
import qualified Data.Text.IO
import qualified Data.Text.Lazy
import qualified Data.Vector
import qualified Dhall.Binary
import qualified Dhall.Context
import qualified Dhall.Core
import qualified Dhall.Import
import qualified Dhall.Map
import qualified Dhall.Parser
import qualified Dhall.Pretty.Internal
import qualified Dhall.TypeCheck
-- $setup
-- >>> :set -XOverloadedStrings
throws :: Exception e => Either e a -> IO a
throws (Left e) = Control.Exception.throwIO e
throws (Right r) = return r
{-| Every `Type` must obey the contract that if an expression's type matches the
the `expected` type then the `extract` function must succeed. If not, then
this exception is thrown
This exception indicates that an invalid `Type` was provided to the `input`
function
-}
data InvalidType = InvalidType deriving (Typeable)
_ERROR :: String
_ERROR = "\ESC[1;31mError\ESC[0m"
instance Show InvalidType where
show InvalidType =
_ERROR <> ": Invalid Dhall.Type \n\
\ \n\
\Every Type must provide an extract function that succeeds if an expression \n\
\matches the expected type. You provided a Type that disobeys this contract \n"
instance Exception InvalidType
-- | @since 1.16
data InputSettings = InputSettings
{ _rootDirectory :: FilePath
, _sourceName :: FilePath
, _evaluateSettings :: EvaluateSettings
}
-- | Default input settings: resolves imports relative to @.@ (the
-- current working directory), report errors as coming from @(input)@,
-- and default evaluation settings from 'defaultEvaluateSettings'.
--
-- @since 1.16
defaultInputSettings :: InputSettings
defaultInputSettings = InputSettings
{ _rootDirectory = "."
, _sourceName = "(input)"
, _evaluateSettings = defaultEvaluateSettings
}
-- | Access the directory to resolve imports relative to.
--
-- @since 1.16
rootDirectory
:: (Functor f)
=> LensLike' f InputSettings FilePath
rootDirectory k s =
fmap (\x -> s { _rootDirectory = x }) (k (_rootDirectory s))
-- | Access the name of the source to report locations from; this is
-- only used in error messages, so it's okay if this is a best guess
-- or something symbolic.
--
-- @since 1.16
sourceName
:: (Functor f)
=> LensLike' f InputSettings FilePath
sourceName k s =
fmap (\x -> s { _sourceName = x}) (k (_sourceName s))
-- | @since 1.16
data EvaluateSettings = EvaluateSettings
{ _startingContext :: Dhall.Context.Context (Expr Src X)
, _normalizer :: Dhall.Core.ReifiedNormalizer X
, _standardVersion :: StandardVersion
}
-- | Default evaluation settings: no extra entries in the initial
-- context, and no special normalizer behaviour.
--
-- @since 1.16
defaultEvaluateSettings :: EvaluateSettings
defaultEvaluateSettings = EvaluateSettings
{ _startingContext = Dhall.Context.empty
, _normalizer = Dhall.Core.ReifiedNormalizer (const (pure Nothing))
, _standardVersion = Dhall.Binary.defaultStandardVersion
}
-- | Access the starting context used for evaluation and type-checking.
--
-- @since 1.16
startingContext
:: (Functor f, HasEvaluateSettings s)
=> LensLike' f s (Dhall.Context.Context (Expr Src X))
startingContext = evaluateSettings . l
where
l :: (Functor f)
=> LensLike' f EvaluateSettings (Dhall.Context.Context (Expr Src X))
l k s = fmap (\x -> s { _startingContext = x}) (k (_startingContext s))
-- | Access the custom normalizer.
--
-- @since 1.16
normalizer
:: (Functor f, HasEvaluateSettings s)
=> LensLike' f s (Dhall.Core.ReifiedNormalizer X)
normalizer = evaluateSettings . l
where
l :: (Functor f)
=> LensLike' f EvaluateSettings (Dhall.Core.ReifiedNormalizer X)
l k s = fmap (\x -> s { _normalizer = x }) (k (_normalizer s))
-- | Access the standard version (used primarily when encoding or decoding
-- Dhall expressions to and from a binary representation)
--
-- @since 1.17
standardVersion
:: (Functor f, HasEvaluateSettings s)
=> LensLike' f s StandardVersion
standardVersion = evaluateSettings . l
where
l k s = fmap (\x -> s { _standardVersion = x}) (k (_standardVersion s))
-- | @since 1.16
class HasEvaluateSettings s where
evaluateSettings
:: (Functor f)
=> LensLike' f s EvaluateSettings
instance HasEvaluateSettings InputSettings where
evaluateSettings k s =
fmap (\x -> s { _evaluateSettings = x }) (k (_evaluateSettings s))
instance HasEvaluateSettings EvaluateSettings where
evaluateSettings = id
{-| Type-check and evaluate a Dhall program, decoding the result into Haskell
The first argument determines the type of value that you decode:
>>> input integer "+2"
2
>>> input (vector double) "[1.0, 2.0]"
[1.0,2.0]
Use `auto` to automatically select which type to decode based on the
inferred return type:
>>> input auto "True" :: IO Bool
True
This uses the settings from 'defaultInputSettings'.
-}
input
:: Type a
-- ^ The type of value to decode from Dhall to Haskell
-> Text
-- ^ The Dhall program
-> IO a
-- ^ The decoded value in Haskell
input =
inputWithSettings defaultInputSettings
{-| Extend 'input' with a root directory to resolve imports relative
to, a file to mention in errors as the source, a custom typing
context, and a custom normalization process.
@since 1.16
-}
inputWithSettings
:: InputSettings
-> Type a
-- ^ The type of value to decode from Dhall to Haskell
-> Text
-- ^ The Dhall program
-> IO a
-- ^ The decoded value in Haskell
inputWithSettings settings (Type {..}) txt = do
expr <- throws (Dhall.Parser.exprFromText (view sourceName settings) txt)
let InputSettings {..} = settings
let EvaluateSettings {..} = _evaluateSettings
let transform =
set Dhall.Import.standardVersion _standardVersion
. set Dhall.Import.normalizer _normalizer
. set Dhall.Import.startingContext _startingContext
let status = transform (Dhall.Import.emptyStatus _rootDirectory)
expr' <- State.evalStateT (Dhall.Import.loadWith expr) status
let suffix = Dhall.Pretty.Internal.prettyToStrictText expected
let annot = case expr' of
Note (Src begin end bytes) _ ->
Note (Src begin end bytes') (Annot expr' expected)
where
bytes' = bytes <> " : " <> suffix
_ ->
Annot expr' expected
_ <- throws (Dhall.TypeCheck.typeWith (view startingContext settings) annot)
case extract (Dhall.Core.normalizeWith (Dhall.Core.getReifiedNormalizer (view normalizer settings)) expr') of
Just x -> return x
Nothing -> Control.Exception.throwIO InvalidType
{-| Type-check and evaluate a Dhall program that is read from the
file-system.
This uses the settings from 'defaultEvaluateSettings'.
@since 1.16
-}
inputFile
:: Type a
-- ^ The type of value to decode from Dhall to Haskell
-> FilePath
-- ^ The path to the Dhall program.
-> IO a
-- ^ The decoded value in Haskell.
inputFile =
inputFileWithSettings defaultEvaluateSettings
{-| Extend 'inputFile' with a custom typing context and a custom
normalization process.
@since 1.16
-}
inputFileWithSettings
:: EvaluateSettings
-> Type a
-- ^ The type of value to decode from Dhall to Haskell
-> FilePath
-- ^ The path to the Dhall program.
-> IO a
-- ^ The decoded value in Haskell.
inputFileWithSettings settings ty path = do
text <- Data.Text.IO.readFile path
let inputSettings = InputSettings
{ _rootDirectory = takeDirectory path
, _sourceName = path
, _evaluateSettings = settings
}
inputWithSettings inputSettings ty text
{-| Similar to `input`, but without interpreting the Dhall `Expr` into a Haskell
type.
Uses the settings from 'defaultInputSettings'.
-}
inputExpr
:: Text
-- ^ The Dhall program
-> IO (Expr Src X)
-- ^ The fully normalized AST
inputExpr =
inputExprWithSettings defaultInputSettings
{-| Extend 'inputExpr' with a root directory to resolve imports relative
to, a file to mention in errors as the source, a custom typing
context, and a custom normalization process.
@since 1.16
-}
inputExprWithSettings
:: InputSettings
-> Text
-- ^ The Dhall program
-> IO (Expr Src X)
-- ^ The fully normalized AST
inputExprWithSettings settings txt = do
expr <- throws (Dhall.Parser.exprFromText (view sourceName settings) txt)
let InputSettings {..} = settings
let EvaluateSettings {..} = _evaluateSettings
let transform =
set Dhall.Import.standardVersion _standardVersion
. set Dhall.Import.normalizer _normalizer
. set Dhall.Import.startingContext _startingContext
let status = transform (Dhall.Import.emptyStatus _rootDirectory)
expr' <- State.evalStateT (Dhall.Import.loadWith expr) status
_ <- throws (Dhall.TypeCheck.typeWith (view startingContext settings) expr')
pure (Dhall.Core.normalizeWith (Dhall.Core.getReifiedNormalizer (view normalizer settings)) expr')
-- | Use this function to extract Haskell values directly from Dhall AST.
-- The intended use case is to allow easy extraction of Dhall values for
-- making the function `Dhall.Core.normalizeWith` easier to use.
--
-- For other use cases, use `input` from `Dhall` module. It will give you
-- a much better user experience.
rawInput
:: Alternative f
=> Type a
-- ^ The type of value to decode from Dhall to Haskell
-> Expr s X
-- ^ a closed form Dhall program, which evaluates to the expected type
-> f a
-- ^ The decoded value in Haskell
rawInput (Type {..}) expr = do
case extract (Dhall.Core.normalize expr) of
Just x -> pure x
Nothing -> empty
{-| Use this to provide more detailed error messages
>> input auto "True" :: IO Integer
> *** Exception: Error: Expression doesn't match annotation
>
> True : Integer
>
> (input):1:1
>> detailed (input auto "True") :: IO Integer
> *** Exception: Error: Expression doesn't match annotation
>
> Explanation: You can annotate an expression with its type or kind using the
> ❰:❱ symbol, like this:
>
>
> ┌───────┐
> │ x : t │ ❰x❱ is an expression and ❰t❱ is the annotated type or kind of ❰x❱
> └───────┘
>
> The type checker verifies that the expression's type or kind matches the
> provided annotation
>
> For example, all of the following are valid annotations that the type checker
> accepts:
>
>
> ┌─────────────┐
> │ 1 : Natural │ ❰1❱ is an expression that has type ❰Natural❱, so the type
> └─────────────┘ checker accepts the annotation
>
>
> ┌───────────────────────┐
> │ Natural/even 2 : Bool │ ❰Natural/even 2❱ has type ❰Bool❱, so the type
> └───────────────────────┘ checker accepts the annotation
>
>
> ┌────────────────────┐
> │ List : Type → Type │ ❰List❱ is an expression that has kind ❰Type → Type❱,
> └────────────────────┘ so the type checker accepts the annotation
>
>
> ┌──────────────────┐
> │ List Text : Type │ ❰List Text❱ is an expression that has kind ❰Type❱, so
> └──────────────────┘ the type checker accepts the annotation
>
>
> However, the following annotations are not valid and the type checker will
> reject them:
>
>
> ┌──────────┐
> │ 1 : Text │ The type checker rejects this because ❰1❱ does not have type
> └──────────┘ ❰Text❱
>
>
> ┌─────────────┐
> │ List : Type │ ❰List❱ does not have kind ❰Type❱
> └─────────────┘
>
>
> You or the interpreter annotated this expression:
>
> ↳ True
>
> ... with this type or kind:
>
> ↳ Integer
>
> ... but the inferred type or kind of the expression is actually:
>
> ↳ Bool
>
> Some common reasons why you might get this error:
>
> ● The Haskell Dhall interpreter implicitly inserts a top-level annotation
> matching the expected type
>
> For example, if you run the following Haskell code:
>
>
> ┌───────────────────────────────┐
> │ >>> input auto "1" :: IO Text │
> └───────────────────────────────┘
>
>
> ... then the interpreter will actually type check the following annotated
> expression:
>
>
> ┌──────────┐
> │ 1 : Text │
> └──────────┘
>
>
> ... and then type-checking will fail
>
> ────────────────────────────────────────────────────────────────────────────────
>
> True : Integer
>
> (input):1:1
-}
detailed :: IO a -> IO a
detailed =
Control.Exception.handle handler1 . Control.Exception.handle handler0
where
handler0 :: Imported (TypeError Src X) -> IO a
handler0 (Imported ps e) =
Control.Exception.throwIO (Imported ps (DetailedTypeError e))
handler1 :: TypeError Src X -> IO a
handler1 e = Control.Exception.throwIO (DetailedTypeError e)
{-| A @(Type a)@ represents a way to marshal a value of type @\'a\'@ from Dhall
into Haskell
You can produce `Type`s either explicitly:
> example :: Type (Vector Text)
> example = vector text
... or implicitly using `auto`:
> example :: Type (Vector Text)
> example = auto
You can consume `Type`s using the `input` function:
> input :: Type a -> Text -> IO a
-}
data Type a = Type
{ extract :: Expr Src X -> Maybe a
-- ^ Extracts Haskell value from the Dhall expression
, expected :: Expr Src X
-- ^ Dhall type of the Haskell value
}
deriving (Functor)
{-| Decode a `Bool`
>>> input bool "True"
True
-}
bool :: Type Bool
bool = Type {..}
where
extract (BoolLit b) = pure b
extract _ = Nothing
expected = Bool
{-| Decode a `Natural`
>>> input natural "42"
42
-}
natural :: Type Natural
natural = Type {..}
where
extract (NaturalLit n) = pure n
extract _ = empty
expected = Natural
{-| Decode an `Integer`
>>> input integer "+42"
42
-}
integer :: Type Integer
integer = Type {..}
where
extract (IntegerLit n) = pure n
extract _ = empty
expected = Integer
{-| Decode a `Scientific`
>>> input scientific "1e100"
1.0e100
-}
scientific :: Type Scientific
scientific = fmap Data.Scientific.fromFloatDigits double
{-| Decode a `Double`
>>> input double "42.0"
42.0
-}
double :: Type Double
double = Type {..}
where
extract (DoubleLit n) = pure n
extract _ = empty
expected = Double
{-| Decode lazy `Text`
>>> input lazyText "\"Test\""
"Test"
-}
lazyText :: Type Data.Text.Lazy.Text
lazyText = Type {..}
where
extract (TextLit (Chunks [] t)) = pure (Data.Text.Lazy.fromStrict t)
extract _ = empty
expected = Text
{-| Decode strict `Text`
>>> input strictText "\"Test\""
"Test"
-}
strictText :: Type Text
strictText = fmap Data.Text.Lazy.toStrict lazyText
{-| Decode a `Maybe`
>>> input (maybe natural) "Some 1"
Just 1
-}
maybe :: Type a -> Type (Maybe a)
maybe (Type extractIn expectedIn) = Type extractOut expectedOut
where
extractOut (Some e ) = fmap Just (extractIn e)
extractOut (App None _) = return Nothing
extractOut _ = empty
expectedOut = App Optional expectedIn
{-| Decode a `Seq`
>>> input (sequence natural) "[1, 2, 3]"
fromList [1,2,3]
-}
sequence :: Type a -> Type (Seq a)
sequence (Type extractIn expectedIn) = Type extractOut expectedOut
where
extractOut (ListLit _ es) = traverse extractIn es
extractOut _ = Nothing
expectedOut = App List expectedIn
{-| Decode a list
>>> input (list natural) "[1, 2, 3]"
[1,2,3]
-}
list :: Type a -> Type [a]
list = fmap Data.Foldable.toList . sequence
{-| Decode a `Vector`
>>> input (vector natural) "[1, 2, 3]"
[1,2,3]
-}
vector :: Type a -> Type (Vector a)
vector = fmap Data.Vector.fromList . list
{-| Decode @()@ from an empty record.
>>> input unit "{=}" -- GHC doesn't print the result if it is ()
-}
unit :: Type ()
unit = Type extractOut expectedOut
where
extractOut (RecordLit fields)
| Data.Foldable.null fields = return ()
extractOut _ = Nothing
expectedOut = Record mempty
{-| Decode a `String`
>>> input string "\"ABC\""
"ABC"
-}
string :: Type String
string = Data.Text.Lazy.unpack <$> lazyText
{-| Given a pair of `Type`s, decode a tuple-record into their pairing.
>>> input (pair natural bool) "{ _1 = 42, _2 = False }"
(42,False)
-}
pair :: Type a -> Type b -> Type (a, b)
pair l r = Type extractOut expectedOut
where
extractOut (RecordLit fields) =
(,) <$> ( Dhall.Map.lookup "_1" fields >>= extract l )
<*> ( Dhall.Map.lookup "_2" fields >>= extract r )
extractOut _ = Nothing
expectedOut =
Record
(Dhall.Map.fromList
[ ("_1", expected l)
, ("_2", expected r)
]
)
{-| Any value that implements `Interpret` can be automatically decoded based on
the inferred return type of `input`
>>> input auto "[1, 2, 3]" :: IO (Vector Natural)
[1,2,3]
This class auto-generates a default implementation for records that
implement `Generic`. This does not auto-generate an instance for recursive
types.
-}
class Interpret a where
autoWith:: InterpretOptions -> Type a
default autoWith
:: (Generic a, GenericInterpret (Rep a)) => InterpretOptions -> Type a
autoWith options = fmap GHC.Generics.to (evalState (genericAutoWith options) 1)
instance Interpret Bool where
autoWith _ = bool
instance Interpret Natural where
autoWith _ = natural
instance Interpret Integer where
autoWith _ = integer
instance Interpret Scientific where
autoWith _ = scientific
instance Interpret Double where
autoWith _ = double
instance {-# OVERLAPS #-} Interpret [Char] where
autoWith _ = string
instance Interpret Data.Text.Lazy.Text where
autoWith _ = lazyText
instance Interpret Text where
autoWith _ = strictText
instance Interpret a => Interpret (Maybe a) where
autoWith opts = maybe (autoWith opts)
instance Interpret a => Interpret (Seq a) where
autoWith opts = sequence (autoWith opts)
instance Interpret a => Interpret [a] where
autoWith = fmap (fmap Data.Vector.toList) autoWith
instance Interpret a => Interpret (Vector a) where
autoWith opts = vector (autoWith opts)
instance (Inject a, Interpret b) => Interpret (a -> b) where
autoWith opts = Type extractOut expectedOut
where
normalizer_ = Dhall.Core.getReifiedNormalizer (inputNormalizer opts)
extractOut e = Just (\i -> case extractIn (Dhall.Core.normalizeWith normalizer_ (App e (embed i))) of
Just o -> o
Nothing -> error "Interpret: You cannot decode a function if it does not have the correct type" )
expectedOut = Pi "_" declared expectedIn
InputType {..} = inject
Type extractIn expectedIn = autoWith opts
instance (Interpret a, Interpret b) => Interpret (a, b)
{-| Use the default options for interpreting a configuration file
> auto = autoWith defaultInterpretOptions
-}
auto :: Interpret a => Type a
auto = autoWith defaultInterpretOptions
{-| `genericAuto` is the default implementation for `auto` if you derive
`Interpret`. The difference is that you can use `genericAuto` without
having to explicitly provide an `Interpret` instance for a type as long as
the type derives `Generic`
-}
genericAuto :: (Generic a, GenericInterpret (Rep a)) => Type a
genericAuto = fmap to (evalState (genericAutoWith defaultInterpretOptions) 1)
{-| Use these options to tweak how Dhall derives a generic implementation of
`Interpret`
-}
data InterpretOptions = InterpretOptions
{ fieldModifier :: Text -> Text
-- ^ Function used to transform Haskell field names into their corresponding
-- Dhall field names
, constructorModifier :: Text -> Text
-- ^ Function used to transform Haskell constructor names into their
-- corresponding Dhall alternative names
, inputNormalizer :: Dhall.Core.ReifiedNormalizer X
-- ^ This is only used by the `Interpret` instance for functions in order
-- to normalize the function input before marshaling the input into a
-- Dhall expression
}
{-| Default interpret options, which you can tweak or override, like this:
> autoWith
> (defaultInterpretOptions { fieldModifier = Data.Text.Lazy.dropWhile (== '_') })
-}
defaultInterpretOptions :: InterpretOptions
defaultInterpretOptions = InterpretOptions
{ fieldModifier = id
, constructorModifier = id
, inputNormalizer = Dhall.Core.ReifiedNormalizer (const (pure Nothing))
}
{-| This is the underlying class that powers the `Interpret` class's support
for automatically deriving a generic implementation
-}
class GenericInterpret f where
genericAutoWith :: InterpretOptions -> State Int (Type (f a))
instance GenericInterpret f => GenericInterpret (M1 D d f) where
genericAutoWith options = do
res <- genericAutoWith options
pure (fmap M1 res)
instance GenericInterpret V1 where
genericAutoWith _ = pure Type {..}
where
extract _ = Nothing
expected = Union mempty
unsafeExpectUnion :: Text -> Expr Src X -> Dhall.Map.Map Text (Expr Src X)
unsafeExpectUnion _ (Union kts) =
kts
unsafeExpectUnion name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
unsafeExpectRecord :: Text -> Expr Src X -> Dhall.Map.Map Text (Expr Src X)
unsafeExpectRecord _ (Record kts) =
kts
unsafeExpectRecord name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
unsafeExpectUnionLit
:: Text -> Expr Src X -> (Text, Expr Src X, Dhall.Map.Map Text (Expr Src X))
unsafeExpectUnionLit _ (UnionLit k v kts) =
(k, v, kts)
unsafeExpectUnionLit name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
unsafeExpectRecordLit :: Text -> Expr Src X -> Dhall.Map.Map Text (Expr Src X)
unsafeExpectRecordLit _ (RecordLit kvs) =
kvs
unsafeExpectRecordLit name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
instance (Constructor c1, Constructor c2, GenericInterpret f1, GenericInterpret f2) => GenericInterpret (M1 C c1 f1 :+: M1 C c2 f2) where
genericAutoWith options@(InterpretOptions {..}) = pure (Type {..})
where
nL :: M1 i c1 f1 a
nL = undefined
nR :: M1 i c2 f2 a
nR = undefined
nameL = constructorModifier (Data.Text.pack (conName nL))
nameR = constructorModifier (Data.Text.pack (conName nR))
extract (UnionLit name e _)
| name == nameL = fmap (L1 . M1) (extractL e)
| name == nameR = fmap (R1 . M1) (extractR e)
| otherwise = Nothing
extract _ = Nothing
expected =
Union (Dhall.Map.fromList [(nameL, expectedL), (nameR, expectedR)])
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
instance (Constructor c, GenericInterpret (f :+: g), GenericInterpret h) => GenericInterpret ((f :+: g) :+: M1 C c h) where
genericAutoWith options@(InterpretOptions {..}) = pure (Type {..})
where
n :: M1 i c h a
n = undefined
name = constructorModifier (Data.Text.pack (conName n))
extract u@(UnionLit name' e _)
| name == name' = fmap (R1 . M1) (extractR e)
| otherwise = fmap L1 (extractL u)
extract _ = Nothing
expected =
Union (Dhall.Map.insert name expectedR ktsL)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
ktsL = unsafeExpectUnion "genericAutoWith (:+:)" expectedL
instance (Constructor c, GenericInterpret f, GenericInterpret (g :+: h)) => GenericInterpret (M1 C c f :+: (g :+: h)) where
genericAutoWith options@(InterpretOptions {..}) = pure (Type {..})
where
n :: M1 i c f a
n = undefined
name = constructorModifier (Data.Text.pack (conName n))
extract u@(UnionLit name' e _)
| name == name' = fmap (L1 . M1) (extractL e)
| otherwise = fmap R1 (extractR u)
extract _ = Nothing
expected =
Union (Dhall.Map.insert name expectedL ktsR)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
ktsR = unsafeExpectUnion "genericAutoWith (:+:)" expectedR
instance (GenericInterpret (f :+: g), GenericInterpret (h :+: i)) => GenericInterpret ((f :+: g) :+: (h :+: i)) where
genericAutoWith options = pure (Type {..})
where
extract e = fmap L1 (extractL e) <|> fmap R1 (extractR e)
expected = Union (Dhall.Map.union ktsL ktsR)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
ktsL = unsafeExpectUnion "genericAutoWith (:+:)" expectedL
ktsR = unsafeExpectUnion "genericAutoWith (:+:)" expectedR
instance GenericInterpret f => GenericInterpret (M1 C c f) where
genericAutoWith options = do
res <- genericAutoWith options
pure (fmap M1 res)
instance GenericInterpret U1 where
genericAutoWith _ = pure (Type {..})
where
extract _ = Just U1
expected = Record (Dhall.Map.fromList [])
instance (GenericInterpret f, GenericInterpret g) => GenericInterpret (f :*: g) where
genericAutoWith options = do
Type extractL expectedL <- genericAutoWith options
Type extractR expectedR <- genericAutoWith options
let ktsL = unsafeExpectRecord "genericAutoWith (:*:)"expectedL
let ktsR = unsafeExpectRecord "genericAutoWith (:*:)"expectedR
pure
(Type
{ extract = liftA2 (liftA2 (:*:)) extractL extractR
, expected = Record (Dhall.Map.union ktsL ktsR)
}
)
getSelName :: Selector s => M1 i s f a -> State Int String
getSelName n = case selName n of
"" -> do i <- get
put (i + 1)
pure ("_" ++ show i)
nn -> pure nn
instance (Selector s, Interpret a) => GenericInterpret (M1 S s (K1 i a)) where
genericAutoWith opts@(InterpretOptions {..}) = do
name <- getSelName n
let extract (RecordLit m) = do
let name' = fieldModifier (Data.Text.pack name)
e <- Dhall.Map.lookup name' m
fmap (M1 . K1) (extract' e)
extract _ = Nothing
let expected =
Record (Dhall.Map.fromList [(key, expected')])
where
key = fieldModifier (Data.Text.pack name)
pure (Type {..})
where
n :: M1 i s f a
n = undefined
Type extract' expected' = autoWith opts
{-| An @(InputType a)@ represents a way to marshal a value of type @\'a\'@ from
Haskell into Dhall
-}
data InputType a = InputType
{ embed :: a -> Expr Src X
-- ^ Embeds a Haskell value as a Dhall expression
, declared :: Expr Src X
-- ^ Dhall type of the Haskell value
}
instance Contravariant InputType where
contramap f (InputType embed declared) = InputType embed' declared
where
embed' x = embed (f x)
{-| This class is used by `Interpret` instance for functions:
> instance (Inject a, Interpret b) => Interpret (a -> b)
You can convert Dhall functions with "simple" inputs (i.e. instances of this
class) into Haskell functions. This works by:
* Marshaling the input to the Haskell function into a Dhall expression (i.e.
@x :: Expr Src X@)
* Applying the Dhall function (i.e. @f :: Expr Src X@) to the Dhall input
(i.e. @App f x@)
* Normalizing the syntax tree (i.e. @normalize (App f x)@)
* Marshaling the resulting Dhall expression back into a Haskell value
-}
class Inject a where
injectWith :: InterpretOptions -> InputType a
default injectWith
:: (Generic a, GenericInject (Rep a)) => InterpretOptions -> InputType a
injectWith options
= contramap GHC.Generics.from (evalState (genericInjectWith options) 1)
{-| Use the default options for injecting a value
> inject = inject defaultInterpretOptions
-}
inject :: Inject a => InputType a
inject = injectWith defaultInterpretOptions
instance Inject Bool where
injectWith _ = InputType {..}
where
embed = BoolLit
declared = Bool
instance Inject Data.Text.Lazy.Text where
injectWith _ = InputType {..}
where
embed text =
TextLit (Chunks [] (Data.Text.Lazy.toStrict text))
declared = Text
instance Inject Text where
injectWith _ = InputType {..}
where
embed text = TextLit (Chunks [] text)
declared = Text
instance Inject Natural where
injectWith _ = InputType {..}
where
embed = NaturalLit
declared = Natural
instance Inject Integer where
injectWith _ = InputType {..}
where
embed = IntegerLit
declared = Integer
instance Inject Int where
injectWith _ = InputType {..}
where
embed = IntegerLit . toInteger
declared = Integer
instance Inject Word8 where
injectWith _ = InputType {..}
where
embed = IntegerLit . toInteger
declared = Integer
instance Inject Word16 where
injectWith _ = InputType {..}
where
embed = IntegerLit . toInteger
declared = Integer
instance Inject Word32 where
injectWith _ = InputType {..}
where
embed = IntegerLit . toInteger
declared = Integer
instance Inject Word64 where
injectWith _ = InputType {..}
where
embed = IntegerLit . toInteger
declared = Integer
instance Inject Double where
injectWith _ = InputType {..}
where
embed = DoubleLit
declared = Double
instance Inject () where
injectWith _ = InputType {..}
where
embed = const (RecordLit mempty)
declared = Record mempty
instance Inject a => Inject (Maybe a) where
injectWith options = InputType embedOut declaredOut
where
embedOut (Just x) =
OptionalLit declaredIn (pure (embedIn x))
embedOut Nothing =
OptionalLit declaredIn empty
InputType embedIn declaredIn = injectWith options
declaredOut = App Optional declaredIn
instance Inject a => Inject (Seq a) where
injectWith options = InputType embedOut declaredOut
where
embedOut xs = ListLit (Just declaredIn) (fmap embedIn xs)
declaredOut = App List declaredIn
InputType embedIn declaredIn = injectWith options
instance Inject a => Inject [a] where
injectWith = fmap (contramap Data.Sequence.fromList) injectWith
instance Inject a => Inject (Vector a) where
injectWith = fmap (contramap Data.Vector.toList) injectWith
instance Inject a => Inject (Data.Set.Set a) where
injectWith = fmap (contramap Data.Set.toList) injectWith
instance (Inject a, Inject b) => Inject (a, b)
{-| This is the underlying class that powers the `Interpret` class's support
for automatically deriving a generic implementation
-}
class GenericInject f where
genericInjectWith :: InterpretOptions -> State Int (InputType (f a))
instance GenericInject f => GenericInject (M1 D d f) where
genericInjectWith options = do
res <- genericInjectWith options
pure (contramap unM1 res)
instance GenericInject f => GenericInject (M1 C c f) where
genericInjectWith options = do
res <- genericInjectWith options
pure (contramap unM1 res)
instance (Constructor c1, Constructor c2, GenericInject f1, GenericInject f2) => GenericInject (M1 C c1 f1 :+: M1 C c2 f2) where
genericInjectWith options@(InterpretOptions {..}) = pure (InputType {..})
where
embed (L1 (M1 l)) =
UnionLit keyL (embedL l) (Dhall.Map.singleton keyR declaredR)
embed (R1 (M1 r)) =
UnionLit keyR (embedR r) (Dhall.Map.singleton keyL declaredL)
declared =
Union (Dhall.Map.fromList [(keyL, declaredL), (keyR, declaredR)])
nL :: M1 i c1 f1 a
nL = undefined
nR :: M1 i c2 f2 a
nR = undefined
keyL = constructorModifier (Data.Text.pack (conName nL))
keyR = constructorModifier (Data.Text.pack (conName nR))
InputType embedL declaredL = evalState (genericInjectWith options) 1
InputType embedR declaredR = evalState (genericInjectWith options) 1
instance (Constructor c, GenericInject (f :+: g), GenericInject h) => GenericInject ((f :+: g) :+: M1 C c h) where
genericInjectWith options@(InterpretOptions {..}) = pure (InputType {..})
where
embed (L1 l) =
UnionLit keyL valL (Dhall.Map.insert keyR declaredR ktsL')
where
(keyL, valL, ktsL') =
unsafeExpectUnionLit "genericInjectWith (:+:)" (embedL l)
embed (R1 (M1 r)) = UnionLit keyR (embedR r) ktsL
nR :: M1 i c h a
nR = undefined
keyR = constructorModifier (Data.Text.pack (conName nR))
declared = Union (Dhall.Map.insert keyR declaredR ktsL)
InputType embedL declaredL = evalState (genericInjectWith options) 1
InputType embedR declaredR = evalState (genericInjectWith options) 1
ktsL = unsafeExpectUnion "genericInjectWith (:+:)" declaredL
instance (Constructor c, GenericInject f, GenericInject (g :+: h)) => GenericInject (M1 C c f :+: (g :+: h)) where
genericInjectWith options@(InterpretOptions {..}) = pure (InputType {..})
where
embed (L1 (M1 l)) = UnionLit keyL (embedL l) ktsR
embed (R1 r) =
UnionLit keyR valR (Dhall.Map.insert keyL declaredL ktsR')
where
(keyR, valR, ktsR') =
unsafeExpectUnionLit "genericInjectWith (:+:)" (embedR r)
nL :: M1 i c f a
nL = undefined
keyL = constructorModifier (Data.Text.pack (conName nL))
declared = Union (Dhall.Map.insert keyL declaredL ktsR)
InputType embedL declaredL = evalState (genericInjectWith options) 1
InputType embedR declaredR = evalState (genericInjectWith options) 1
ktsR = unsafeExpectUnion "genericInjectWith (:+:)" declaredR
instance (GenericInject (f :+: g), GenericInject (h :+: i)) => GenericInject ((f :+: g) :+: (h :+: i)) where
genericInjectWith options = pure (InputType {..})
where
embed (L1 l) =
UnionLit keyL valL (Dhall.Map.union ktsL' ktsR)
where
(keyL, valL, ktsL') =
unsafeExpectUnionLit "genericInjectWith (:+:)" (embedL l)
embed (R1 r) =
UnionLit keyR valR (Dhall.Map.union ktsL ktsR')
where
(keyR, valR, ktsR') =
unsafeExpectUnionLit "genericInjectWith (:+:)" (embedR r)
declared = Union (Dhall.Map.union ktsL ktsR)
InputType embedL declaredL = evalState (genericInjectWith options) 1
InputType embedR declaredR = evalState (genericInjectWith options) 1
ktsL = unsafeExpectUnion "genericInjectWith (:+:)" declaredL
ktsR = unsafeExpectUnion "genericInjectWith (:+:)" declaredR
instance (GenericInject f, GenericInject g) => GenericInject (f :*: g) where
genericInjectWith options = do
InputType embedInL declaredInL <- genericInjectWith options
InputType embedInR declaredInR <- genericInjectWith options
let embed (l :*: r) =
RecordLit (Dhall.Map.union mapL mapR)
where
mapL =
unsafeExpectRecordLit "genericInjectWith (:*:)" (embedInL l)
mapR =
unsafeExpectRecordLit "genericInjectWith (:*:)" (embedInR r)
let declared = Record (Dhall.Map.union mapL mapR)
where
mapL = unsafeExpectRecord "genericInjectWith (:*:)" declaredInL
mapR = unsafeExpectRecord "genericInjectWith (:*:)" declaredInR
pure (InputType {..})
instance GenericInject U1 where
genericInjectWith _ = pure (InputType {..})
where
embed _ = RecordLit mempty
declared = Record mempty
instance (Selector s, Inject a) => GenericInject (M1 S s (K1 i a)) where
genericInjectWith opts@(InterpretOptions {..}) = do
name <- fieldModifier . Data.Text.pack <$> getSelName n
let embed (M1 (K1 x)) =
RecordLit (Dhall.Map.singleton name (embedIn x))
let declared =
Record (Dhall.Map.singleton name declaredIn)
pure (InputType {..})
where
n :: M1 i s f a
n = undefined
InputType embedIn declaredIn = injectWith opts
{-| The 'RecordType' applicative functor allows you to build a 'Type' parser
from a Dhall record.
For example, let's take the following Haskell data type:
> data Project = Project
> { projectName :: Text
> , projectDescription :: Text
> , projectStars :: Natural
> }
And assume that we have the following Dhall record that we would like to
parse as a @Project@:
> { name =
> "dhall-haskell"
> , description =
> "A configuration language guaranteed to terminate"
> , stars =
> 289
> }
Our parser has type 'Type' @Project@, but we can't build that out of any
smaller parsers, as 'Type's cannot be combined (they are only 'Functor's).
However, we can use a 'RecordType' to build a 'Type' for @Project@:
> project :: Type Project
> project =
> record
> ( Project <$> field "name" string
> <*> field "description" string
> <*> field "stars" natural
> )
-}
newtype RecordType a =
RecordType
( Data.Functor.Product.Product
( Control.Applicative.Const
( Dhall.Map.Map
Text
( Expr Src X )
)
)
( Data.Functor.Compose.Compose
( (->) ( Expr Src X ) )
Maybe
)
a
)
deriving (Functor, Applicative)
-- | Run a 'RecordType' parser to build a 'Type' parser.
record :: RecordType a -> Dhall.Type a
record ( RecordType ( Data.Functor.Product.Pair ( Control.Applicative.Const fields ) ( Data.Functor.Compose.Compose extractF ) ) ) =
Type
{ extract =
extractF
, expected =
Record fields
}
-- | Parse a single field of a record.
field :: Text -> Type a -> RecordType a
field key valueType =
let
extractBody expr = do
RecordLit fields <-
return expr
Dhall.Map.lookup key fields
>>= extract valueType
in
RecordType
( Data.Functor.Product.Pair
( Control.Applicative.Const
( Dhall.Map.singleton
key
( Dhall.expected valueType )
)
)
( Data.Functor.Compose.Compose extractBody )
)
{-| The 'UnionType' monoid allows you to build a 'Type' parser
from a Dhall union
For example, let's take the following Haskell data type:
> data Status = Queued Natural
> | Result Text
> | Errored Text
And assume that we have the following Dhall union that we would like to
parse as a @Status@:
> < Result = "Finish succesfully"
> | Queued : Natural
> | Errored : Text
> >
Our parser has type 'Type' @Status@, but we can't build that out of any
smaller parsers, as 'Type's cannot be combined (they are only 'Functor's).
However, we can use a 'UnionType' to build a 'Type' for @Status@:
> status :: Type Status
> status =
> union
> ( Queued <$> constructor "Queued" natural
> <> Result <$> constructor "Result" string
> <> Errored <$> constructor "Errored" string
> )
-}
newtype UnionType a =
UnionType
( Data.Functor.Compose.Compose (Dhall.Map.Map Text) Type a )
deriving (Functor)
instance Data.Semigroup.Semigroup (UnionType a) where
(<>) = coerce ((<>) :: Dhall.Map.Map Text (Type a) -> Dhall.Map.Map Text (Type a) -> Dhall.Map.Map Text (Type a))
instance Monoid (UnionType a) where
mempty = coerce (mempty :: Dhall.Map.Map Text (Type a))
mappend = (Data.Semigroup.<>)
-- | Run a 'UnionType' parser to build a 'Type' parser.
union :: UnionType a -> Type a
union (UnionType (Data.Functor.Compose.Compose mp)) = Type
{ extract = extractF
, expected = Union expect
}
where
expect = Dhall.expected <$> mp
extractF e0 = do
UnionLit fld e1 rest <- Just e0
t <- Dhall.Map.lookup fld mp
guard $ rest == Dhall.Map.delete fld expect
Dhall.extract t e1
-- | Parse a single constructor of a union
constructor :: Text -> Type a -> UnionType a
constructor key valueType = UnionType
( Data.Functor.Compose.Compose (Dhall.Map.singleton key valueType) )
{-| The 'RecordInputType' divisible (contravariant) functor allows you to build
an 'InputType' injector for a Dhall record.
For example, let's take the following Haskell data type:
> data Project = Project
> { projectName :: Text
> , projectDescription :: Text
> , projectStars :: Natural
> }
And assume that we have the following Dhall record that we would like to
parse as a @Project@:
> { name =
> "dhall-haskell"
> , description =
> "A configuration language guaranteed to terminate"
> , stars =
> 289
> }
Our injector has type 'InputType' @Project@, but we can't build that out of any
smaller injectors, as 'InputType's cannot be combined (they are only 'Contravariant's).
However, we can use an 'InputRecordType' to build an 'InputType' for @Project@:
> injectProject :: InputType Project
> injectProject =
> inputRecord
> ( adapt >$< inputFieldWith "name" inject
> >*< inputFieldWith "description" inject
> >*< inputFieldWith "stars" inject
> )
> where
> adapt (Project{..}) = (projectName, (projectDescription, projectStars))
Or, since we are simply using the `Inject` instance to inject each field, we could write
> injectProject :: InputType Project
> injectProject =
> inputRecord
> ( adapt >$< inputField "name"
> >*< inputField "description"
> >*< inputField "stars"
> )
> where
> adapt (Project{..}) = (projectName, (projectDescription, projectStars))
-}
-- | Infix 'divided'
(>*<) :: Divisible f => f a -> f b -> f (a, b)
(>*<) = divided
infixr 5 >*<
newtype RecordInputType a
= RecordInputType (Dhall.Map.Map Text (InputType a))
instance Contravariant RecordInputType where
contramap f (RecordInputType inputTypeRecord) = RecordInputType $ contramap f <$> inputTypeRecord
instance Divisible RecordInputType where
divide f (RecordInputType bInputTypeRecord) (RecordInputType cInputTypeRecord) =
RecordInputType
$ Dhall.Map.union
((contramap $ fst . f) <$> bInputTypeRecord)
((contramap $ snd . f) <$> cInputTypeRecord)
conquer = RecordInputType mempty
inputFieldWith :: Text -> InputType a -> RecordInputType a
inputFieldWith name inputType = RecordInputType $ Dhall.Map.singleton name inputType
inputField :: Inject a => Text -> RecordInputType a
inputField name = inputFieldWith name inject
inputRecord :: RecordInputType a -> InputType a
inputRecord (RecordInputType inputTypeRecord) = InputType makeRecordLit recordType
where
recordType = Record $ declared <$> inputTypeRecord
makeRecordLit x = RecordLit $ (($ x) . embed) <$> inputTypeRecord
{-| The 'UnionInputType' monoid allows you to build
an 'InputType' injector for a Dhall record.
For example, let's take the following Haskell data type:
> data Status = Queued Natural
> | Result Text
> | Errored Text
And assume that we have the following Dhall union that we would like to
parse as a @Status@:
> < Result = "Finish succesfully"
> | Queued : Natural
> | Errored : Text
> >
Our injector has type 'InputType' @Status@, but we can't build that out of any
smaller injectors, as 'InputType's cannot be combined.
However, we can use an 'InputUnionType' to build an 'InputType' for @Status@:
> injectStatus :: InputType Status
> injectStatus =
> adapt
> >$< inputConstructorWith "Queued" inject
> >|< inputConstructorWith "Result" inject
> >|< inputConstructorWith "Errored" inject
> where
> adapt (Queued n) = Left (Left n)
> adapt (Result t) = Left (Right t)
> adapt (Errored e) = Right e
Or, since we are simply using the `Inject` instance to inject each branch, we could write
> injectStatus :: InputType Status
> injectStatus =
> adapt
> >$< inputConstructor "Queued"
> >|< inputConstructor "Result"
> >|< inputConstructor "Errored"
> where
> adapt (Queued n) = Left (Left n)
> adapt (Result t) = Left (Right t)
> adapt (Errored e) = Right e
-}
newtype UnionInputType a =
UnionInputType
( Data.Functor.Product.Product
( Control.Applicative.Const
( Dhall.Map.Map
Text
( Expr Src X )
)
)
( Op (Text, Expr Src X) )
a
)
deriving (Contravariant)
-- | Combines two 'UnionInputType' values. See 'UnionInputType' for usage
-- notes.
--
-- Ideally, this matches 'Data.Functor.Contravariant.Divisible.chosen';
-- however, this allows 'UnionInputType' to not need a 'Divisible' instance
-- itself (since no instance is possible).
(>|<) :: UnionInputType a -> UnionInputType b -> UnionInputType (Either a b)
UnionInputType (Data.Functor.Product.Pair (Control.Applicative.Const mx) (Op fx))
>|< UnionInputType (Data.Functor.Product.Pair (Control.Applicative.Const my) (Op fy)) =
UnionInputType
( Data.Functor.Product.Pair
( Control.Applicative.Const (mx <> my) )
( Op (either fx fy) )
)
infixr 5 >|<
inputUnion :: UnionInputType a -> InputType a
inputUnion ( UnionInputType ( Data.Functor.Product.Pair ( Control.Applicative.Const fields ) ( Op embedF ) ) ) =
InputType
{ embed = \x ->
let (name, y) = embedF x
in UnionLit name y (Dhall.Map.delete name fields)
, declared =
Union fields
}
inputConstructorWith
:: Text
-> InputType a
-> UnionInputType a
inputConstructorWith name inputType = UnionInputType $
Data.Functor.Product.Pair
( Control.Applicative.Const
( Dhall.Map.singleton
name
( declared inputType )
)
)
( Op ( (name,) . embed inputType )
)
inputConstructor
:: Inject a
=> Text
-> UnionInputType a
inputConstructor name = inputConstructorWith name inject