dhall-haskell/dhall/src/Dhall.hs
Simon Jakobi 8f2c28a5dc
Move normalization code from Dhall.Core to a new module Dhall.Normalize (#1452)
Also try to decouple a few modules from Dhall.Core.

Closes #1127.
2019-10-24 00:01:02 +02:00

2614 lines
81 KiB
Haskell

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE UndecidableInstances #-}
{-| Please read the "Dhall.Tutorial" module, which contains a tutorial explaining
how to use the language, the compiler, and this library
-}
module Dhall
(
-- * Input
input
, inputWithSettings
, inputFile
, inputFileWithSettings
, inputExpr
, inputExprWithSettings
, rootDirectory
, sourceName
, startingContext
, normalizer
, defaultInputSettings
, InputSettings
, defaultEvaluateSettings
, EvaluateSettings
, HasEvaluateSettings
, detailed
-- * Types
, Type (..)
, RecordType(..)
, UnionType(..)
, InputType(..)
, FromDhall(..)
, Interpret
, InvalidType(..)
, ExtractErrors(..)
, Extractor
, MonadicExtractor
, typeError
, extractError
, toMonadic
, fromMonadic
, auto
, genericAuto
, InterpretOptions(..)
, SingletonConstructors(..)
, defaultInterpretOptions
, bool
, natural
, integer
, scientific
, double
, lazyText
, strictText
, maybe
, sequence
, list
, vector
, setFromDistinctList
, setIgnoringDuplicates
, hashSetFromDistinctList
, hashSetIgnoringDuplicates
, Dhall.map
, hashMap
, pairFromMapEntry
, unit
, void
, string
, pair
, record
, field
, union
, constructor
, GenericFromDhall(..)
, GenericToDhall(..)
, ToDhall(..)
, Inject
, inject
, genericToDhall
, RecordInputType(..)
, inputFieldWith
, inputField
, inputRecord
, UnionInputType(..)
, inputConstructorWith
, inputConstructor
, inputUnion
, (>|<)
-- * Miscellaneous
, rawInput
, (>$<)
, (>*<)
-- * Re-exports
, Natural
, Seq
, Text
, Vector
, Generic
) where
import Control.Applicative (empty, liftA2, Alternative)
import Control.Exception (Exception)
import Control.Monad.Trans.State.Strict
import Control.Monad (guard)
import Data.Coerce (coerce)
import Data.Either.Validation (Validation(..), ealt, eitherToValidation, validationToEither)
import Data.Fix (Fix(..))
import Data.Functor.Contravariant (Contravariant(..), (>$<), Op(..))
import Data.Functor.Contravariant.Divisible (Divisible(..), divided)
import Data.Hashable (Hashable)
import Data.List.NonEmpty (NonEmpty (..))
import Data.HashMap.Strict (HashMap)
import Data.Map (Map)
import Data.Monoid ((<>))
import Data.Scientific (Scientific)
import Data.Semigroup (Semigroup)
import Data.Sequence (Seq)
import Data.Text (Text)
import Data.Text.Prettyprint.Doc (Pretty)
import Data.Typeable (Typeable)
import Data.Vector (Vector)
import Data.Void (Void)
import Data.Word (Word8, Word16, Word32, Word64)
import Dhall.Syntax (Expr(..), Chunks(..), DhallDouble(..))
import Dhall.Import (Imported(..))
import Dhall.Parser (Src(..))
import Dhall.TypeCheck (DetailedTypeError(..), TypeError)
import GHC.Generics
import Lens.Family (LensLike', view)
import Numeric.Natural (Natural)
import Prelude hiding (maybe, sequence)
import System.FilePath (takeDirectory)
import qualified Control.Applicative
import qualified Control.Exception
import qualified Control.Monad.Trans.State.Strict as State
import qualified Data.Foldable
import qualified Data.Functor.Compose
import qualified Data.Functor.Product
import qualified Data.HashMap.Strict as HashMap
import qualified Data.Map
import qualified Data.Maybe
import qualified Data.List
import qualified Data.List.NonEmpty
import qualified Data.Semigroup
import qualified Data.Scientific
import qualified Data.Sequence
import qualified Data.Set
import qualified Data.HashSet
import qualified Data.Text
import qualified Data.Text.IO
import qualified Data.Text.Lazy
import qualified Data.Vector
import qualified Data.Void
import qualified Dhall.Context
import qualified Dhall.Core
import qualified Dhall.Import
import qualified Dhall.Map
import qualified Dhall.Parser
import qualified Dhall.Pretty.Internal
import qualified Dhall.TypeCheck
import qualified Dhall.Util
import qualified Lens.Family
-- $setup
-- >>> :set -XOverloadedStrings
-- >>> :set -XRecordWildCards
-- >>> import Data.Word (Word8, Word16, Word32, Word64)
-- >>> import Dhall.Pretty.Internal (prettyExpr)
{-| Useful synonym for the `Validation` type used when marshalling Dhall
expressions
-}
type Extractor s a = Validation (ExtractErrors s a)
{-| Useful synonym for the equivalent `Either` type used when marshalling Dhall
code
-}
type MonadicExtractor s a = Either (ExtractErrors s a)
{-| Generate a type error during extraction by specifying the expected type
and the actual type
-}
typeError :: Expr s a -> Expr s a -> Extractor s a b
typeError expected actual =
Failure . ExtractErrors . pure . TypeMismatch $ InvalidType expected actual
-- | Turn a `Text` message into an extraction failure
extractError :: Text -> Extractor s a b
extractError = Failure . ExtractErrors . pure . ExtractError
-- | Switches from an @Applicative@ extraction result, able to accumulate errors,
-- to a @Monad@ extraction result, able to chain sequential operations
toMonadic :: Extractor s a b -> MonadicExtractor s a b
toMonadic = validationToEither
-- | Switches from a @Monad@ extraction result, able to chain sequential errors,
-- to an @Applicative@ extraction result, able to accumulate errors
fromMonadic :: MonadicExtractor s a b -> Extractor s a b
fromMonadic = eitherToValidation
{-| One or more errors returned from extracting a Dhall expression to a
Haskell expression
-}
newtype ExtractErrors s a = ExtractErrors
{ getErrors :: NonEmpty (ExtractError s a)
} deriving Semigroup
instance (Pretty s, Pretty a, Typeable s, Typeable a) => Show (ExtractErrors s a) where
show (ExtractErrors (e :| [])) = show e
show (ExtractErrors es) = prefix <> (unlines . Data.List.NonEmpty.toList . fmap show $ es)
where
prefix =
"Multiple errors were encountered during extraction: \n\
\ \n"
instance (Pretty s, Pretty a, Typeable s, Typeable a) => Exception (ExtractErrors s a)
{-| Extraction of a value can fail for two reasons, either a type mismatch (which should not happen,
as expressions are type-checked against the expected type before being passed to @extract@), or
a term-level error, described with a freeform text value.
-}
data ExtractError s a =
TypeMismatch (InvalidType s a)
| ExtractError Text
instance (Pretty s, Pretty a, Typeable s, Typeable a) => Show (ExtractError s a) where
show (TypeMismatch e) = show e
show (ExtractError es) =
_ERROR <> ": Failed extraction \n\
\ \n\
\The expression type-checked successfully but the transformation to the target \n\
\type failed with the following error: \n\
\ \n\
\" <> Data.Text.unpack es <> "\n\
\ \n"
instance (Pretty s, Pretty a, Typeable s, Typeable a) => Exception (ExtractError s a)
{-| Every `Type` must obey the contract that if an expression's type matches the
the `expected` type then the `extract` function must not fail with a type error.
If not, then this value is returned.
This value indicates that an invalid `Type` was provided to the `input`
function
-}
data InvalidType s a = InvalidType
{ invalidTypeExpected :: Expr s a
, invalidTypeExpression :: Expr s a
}
deriving (Typeable)
instance (Pretty s, Typeable s, Pretty a, Typeable a) => Exception (InvalidType s a)
_ERROR :: String
_ERROR = "\ESC[1;31mError\ESC[0m"
instance (Pretty s, Pretty a, Typeable s, Typeable a) => Show (InvalidType s a) where
show InvalidType { .. } =
_ERROR <> ": Invalid Dhall.Type \n\
\ \n\
\Every Type must provide an extract function that succeeds if an expression \n\
\matches the expected type. You provided a Type that disobeys this contract \n\
\ \n\
\The Type provided has the expected dhall type: \n\
\ \n\
\" <> show txt0 <> "\n\
\ \n\
\and it couldn't extract a value from the well-typed expression: \n\
\ \n\
\" <> show txt1 <> "\n\
\ \n"
where
txt0 = Dhall.Util.insert invalidTypeExpected
txt1 = Dhall.Util.insert invalidTypeExpression
-- | @since 1.16
data InputSettings = InputSettings
{ _rootDirectory :: FilePath
, _sourceName :: FilePath
, _evaluateSettings :: EvaluateSettings
}
-- | Default input settings: resolves imports relative to @.@ (the
-- current working directory), report errors as coming from @(input)@,
-- and default evaluation settings from 'defaultEvaluateSettings'.
--
-- @since 1.16
defaultInputSettings :: InputSettings
defaultInputSettings = InputSettings
{ _rootDirectory = "."
, _sourceName = "(input)"
, _evaluateSettings = defaultEvaluateSettings
}
-- | Access the directory to resolve imports relative to.
--
-- @since 1.16
rootDirectory
:: (Functor f)
=> LensLike' f InputSettings FilePath
rootDirectory k s =
fmap (\x -> s { _rootDirectory = x }) (k (_rootDirectory s))
-- | Access the name of the source to report locations from; this is
-- only used in error messages, so it's okay if this is a best guess
-- or something symbolic.
--
-- @since 1.16
sourceName
:: (Functor f)
=> LensLike' f InputSettings FilePath
sourceName k s =
fmap (\x -> s { _sourceName = x}) (k (_sourceName s))
-- | @since 1.16
data EvaluateSettings = EvaluateSettings
{ _startingContext :: Dhall.Context.Context (Expr Src Void)
, _normalizer :: Maybe (Dhall.Core.ReifiedNormalizer Void)
}
-- | Default evaluation settings: no extra entries in the initial
-- context, and no special normalizer behaviour.
--
-- @since 1.16
defaultEvaluateSettings :: EvaluateSettings
defaultEvaluateSettings = EvaluateSettings
{ _startingContext = Dhall.Context.empty
, _normalizer = Nothing
}
-- | Access the starting context used for evaluation and type-checking.
--
-- @since 1.16
startingContext
:: (Functor f, HasEvaluateSettings s)
=> LensLike' f s (Dhall.Context.Context (Expr Src Void))
startingContext = evaluateSettings . l
where
l :: (Functor f)
=> LensLike' f EvaluateSettings (Dhall.Context.Context (Expr Src Void))
l k s = fmap (\x -> s { _startingContext = x}) (k (_startingContext s))
-- | Access the custom normalizer.
--
-- @since 1.16
normalizer
:: (Functor f, HasEvaluateSettings s)
=> LensLike' f s (Maybe (Dhall.Core.ReifiedNormalizer Void))
normalizer = evaluateSettings . l
where
l :: (Functor f)
=> LensLike' f EvaluateSettings (Maybe (Dhall.Core.ReifiedNormalizer Void))
l k s = fmap (\x -> s { _normalizer = x }) (k (_normalizer s))
-- | @since 1.16
class HasEvaluateSettings s where
evaluateSettings
:: (Functor f)
=> LensLike' f s EvaluateSettings
instance HasEvaluateSettings InputSettings where
evaluateSettings k s =
fmap (\x -> s { _evaluateSettings = x }) (k (_evaluateSettings s))
instance HasEvaluateSettings EvaluateSettings where
evaluateSettings = id
{-| Type-check and evaluate a Dhall program, decoding the result into Haskell
The first argument determines the type of value that you decode:
>>> input integer "+2"
2
>>> input (vector double) "[1.0, 2.0]"
[1.0,2.0]
Use `auto` to automatically select which type to decode based on the
inferred return type:
>>> input auto "True" :: IO Bool
True
This uses the settings from 'defaultInputSettings'.
-}
input
:: Type a
-- ^ The type of value to decode from Dhall to Haskell
-> Text
-- ^ The Dhall program
-> IO a
-- ^ The decoded value in Haskell
input =
inputWithSettings defaultInputSettings
{-| Extend 'input' with a root directory to resolve imports relative
to, a file to mention in errors as the source, a custom typing
context, and a custom normalization process.
@since 1.16
-}
inputWithSettings
:: InputSettings
-> Type a
-- ^ The type of value to decode from Dhall to Haskell
-> Text
-- ^ The Dhall program
-> IO a
-- ^ The decoded value in Haskell
inputWithSettings settings (Type {..}) txt = do
expr <- Dhall.Core.throws (Dhall.Parser.exprFromText (view sourceName settings) txt)
let InputSettings {..} = settings
let EvaluateSettings {..} = _evaluateSettings
let transform =
Lens.Family.set Dhall.Import.normalizer _normalizer
. Lens.Family.set Dhall.Import.startingContext _startingContext
let status = transform (Dhall.Import.emptyStatus _rootDirectory)
expr' <- State.evalStateT (Dhall.Import.loadWith expr) status
let suffix = Dhall.Pretty.Internal.prettyToStrictText expected
let annot = case expr' of
Note (Src begin end bytes) _ ->
Note (Src begin end bytes') (Annot expr' expected)
where
bytes' = bytes <> " : " <> suffix
_ ->
Annot expr' expected
_ <- Dhall.Core.throws (Dhall.TypeCheck.typeWith (view startingContext settings) annot)
let normExpr = Dhall.Core.normalizeWith (view normalizer settings) expr'
case extract normExpr of
Success x -> return x
Failure e -> Control.Exception.throwIO e
{-| Type-check and evaluate a Dhall program that is read from the
file-system.
This uses the settings from 'defaultEvaluateSettings'.
@since 1.16
-}
inputFile
:: Type a
-- ^ The type of value to decode from Dhall to Haskell
-> FilePath
-- ^ The path to the Dhall program.
-> IO a
-- ^ The decoded value in Haskell.
inputFile =
inputFileWithSettings defaultEvaluateSettings
{-| Extend 'inputFile' with a custom typing context and a custom
normalization process.
@since 1.16
-}
inputFileWithSettings
:: EvaluateSettings
-> Type a
-- ^ The type of value to decode from Dhall to Haskell
-> FilePath
-- ^ The path to the Dhall program.
-> IO a
-- ^ The decoded value in Haskell.
inputFileWithSettings settings ty path = do
text <- Data.Text.IO.readFile path
let inputSettings = InputSettings
{ _rootDirectory = takeDirectory path
, _sourceName = path
, _evaluateSettings = settings
}
inputWithSettings inputSettings ty text
{-| Similar to `input`, but without interpreting the Dhall `Expr` into a Haskell
type.
Uses the settings from 'defaultInputSettings'.
-}
inputExpr
:: Text
-- ^ The Dhall program
-> IO (Expr Src Void)
-- ^ The fully normalized AST
inputExpr =
inputExprWithSettings defaultInputSettings
{-| Extend 'inputExpr' with a root directory to resolve imports relative
to, a file to mention in errors as the source, a custom typing
context, and a custom normalization process.
@since 1.16
-}
inputExprWithSettings
:: InputSettings
-> Text
-- ^ The Dhall program
-> IO (Expr Src Void)
-- ^ The fully normalized AST
inputExprWithSettings settings txt = do
expr <- Dhall.Core.throws (Dhall.Parser.exprFromText (view sourceName settings) txt)
let InputSettings {..} = settings
let EvaluateSettings {..} = _evaluateSettings
let transform =
Lens.Family.set Dhall.Import.normalizer _normalizer
. Lens.Family.set Dhall.Import.startingContext _startingContext
let status = transform (Dhall.Import.emptyStatus _rootDirectory)
expr' <- State.evalStateT (Dhall.Import.loadWith expr) status
_ <- Dhall.Core.throws (Dhall.TypeCheck.typeWith (view startingContext settings) expr')
pure (Dhall.Core.normalizeWith (view normalizer settings) expr')
-- | Use this function to extract Haskell values directly from Dhall AST.
-- The intended use case is to allow easy extraction of Dhall values for
-- making the function `Dhall.Core.normalizeWith` easier to use.
--
-- For other use cases, use `input` from `Dhall` module. It will give you
-- a much better user experience.
rawInput
:: Alternative f
=> Type a
-- ^ The type of value to decode from Dhall to Haskell
-> Expr s Void
-- ^ a closed form Dhall program, which evaluates to the expected type
-> f a
-- ^ The decoded value in Haskell
rawInput (Type {..}) expr = do
case extract (Dhall.Core.normalize expr) of
Success x -> pure x
Failure _e -> empty
{-| Use this to provide more detailed error messages
>> input auto "True" :: IO Integer
> *** Exception: Error: Expression doesn't match annotation
>
> True : Integer
>
> (input):1:1
>> detailed (input auto "True") :: IO Integer
> *** Exception: Error: Expression doesn't match annotation
>
> Explanation: You can annotate an expression with its type or kind using the
> ❰:❱ symbol, like this:
>
>
> ┌───────┐
> │ x : t │ ❰x❱ is an expression and ❰t❱ is the annotated type or kind of ❰x❱
> └───────┘
>
> The type checker verifies that the expression's type or kind matches the
> provided annotation
>
> For example, all of the following are valid annotations that the type checker
> accepts:
>
>
> ┌─────────────┐
> │ 1 : Natural │ ❰1❱ is an expression that has type ❰Natural❱, so the type
> └─────────────┘ checker accepts the annotation
>
>
> ┌───────────────────────┐
> │ Natural/even 2 : Bool │ ❰Natural/even 2❱ has type ❰Bool❱, so the type
> └───────────────────────┘ checker accepts the annotation
>
>
> ┌────────────────────┐
> │ List : Type → Type │ ❰List❱ is an expression that has kind ❰Type → Type❱,
> └────────────────────┘ so the type checker accepts the annotation
>
>
> ┌──────────────────┐
> │ List Text : Type │ ❰List Text❱ is an expression that has kind ❰Type❱, so
> └──────────────────┘ the type checker accepts the annotation
>
>
> However, the following annotations are not valid and the type checker will
> reject them:
>
>
> ┌──────────┐
> │ 1 : Text │ The type checker rejects this because ❰1❱ does not have type
> └──────────┘ ❰Text❱
>
>
> ┌─────────────┐
> │ List : Type │ ❰List❱ does not have kind ❰Type❱
> └─────────────┘
>
>
> You or the interpreter annotated this expression:
>
> ↳ True
>
> ... with this type or kind:
>
> ↳ Integer
>
> ... but the inferred type or kind of the expression is actually:
>
> ↳ Bool
>
> Some common reasons why you might get this error:
>
> ● The Haskell Dhall interpreter implicitly inserts a top-level annotation
> matching the expected type
>
> For example, if you run the following Haskell code:
>
>
> ┌───────────────────────────────┐
> │ >>> input auto "1" :: IO Text │
> └───────────────────────────────┘
>
>
> ... then the interpreter will actually type check the following annotated
> expression:
>
>
> ┌──────────┐
> │ 1 : Text │
> └──────────┘
>
>
> ... and then type-checking will fail
>
> ────────────────────────────────────────────────────────────────────────────────
>
> True : Integer
>
> (input):1:1
-}
detailed :: IO a -> IO a
detailed =
Control.Exception.handle handler1 . Control.Exception.handle handler0
where
handler0 :: Imported (TypeError Src Void) -> IO a
handler0 (Imported ps e) =
Control.Exception.throwIO (Imported ps (DetailedTypeError e))
handler1 :: TypeError Src Void -> IO a
handler1 e = Control.Exception.throwIO (DetailedTypeError e)
{-| A @(Type a)@ represents a way to marshal a value of type @\'a\'@ from Dhall
into Haskell
You can produce `Type`s either explicitly:
> example :: Type (Vector Text)
> example = vector text
... or implicitly using `auto`:
> example :: Type (Vector Text)
> example = auto
You can consume `Type`s using the `input` function:
> input :: Type a -> Text -> IO a
-}
data Type a = Type
{ extract :: Expr Src Void -> Extractor Src Void a
-- ^ Extracts Haskell value from the Dhall expression
, expected :: Expr Src Void
-- ^ Dhall type of the Haskell value
}
deriving (Functor)
{-| Decode a `Bool`
>>> input bool "True"
True
-}
bool :: Type Bool
bool = Type {..}
where
extract (BoolLit b) = pure b
extract expr = typeError expected expr
expected = Bool
{-| Decode a `Natural`
>>> input natural "42"
42
-}
natural :: Type Natural
natural = Type {..}
where
extract (NaturalLit n) = pure n
extract expr = typeError Natural expr
expected = Natural
{-| Decode an `Integer`
>>> input integer "+42"
42
-}
integer :: Type Integer
integer = Type {..}
where
extract (IntegerLit n) = pure n
extract expr = typeError Integer expr
expected = Integer
{-| Decode a `Scientific`
>>> input scientific "1e100"
1.0e100
-}
scientific :: Type Scientific
scientific = fmap Data.Scientific.fromFloatDigits double
{-| Decode a `Double`
>>> input double "42.0"
42.0
-}
double :: Type Double
double = Type {..}
where
extract (DoubleLit (DhallDouble n)) = pure n
extract expr = typeError Double expr
expected = Double
{-| Decode lazy `Text`
>>> input lazyText "\"Test\""
"Test"
-}
lazyText :: Type Data.Text.Lazy.Text
lazyText = fmap Data.Text.Lazy.fromStrict strictText
{-| Decode strict `Text`
>>> input strictText "\"Test\""
"Test"
-}
strictText :: Type Text
strictText = Type {..}
where
extract (TextLit (Chunks [] t)) = pure t
extract expr = typeError Text expr
expected = Text
{-| Decode a `Maybe`
>>> input (maybe natural) "Some 1"
Just 1
-}
maybe :: Type a -> Type (Maybe a)
maybe (Type extractIn expectedIn) = Type extractOut expectedOut
where
extractOut (Some e ) = fmap Just (extractIn e)
extractOut (App None _) = pure Nothing
extractOut expr = typeError expectedOut expr
expectedOut = App Optional expectedIn
{-| Decode a `Seq`
>>> input (sequence natural) "[1, 2, 3]"
fromList [1,2,3]
-}
sequence :: Type a -> Type (Seq a)
sequence (Type extractIn expectedIn) = Type extractOut expectedOut
where
extractOut (ListLit _ es) = traverse extractIn es
extractOut expr = typeError expectedOut expr
expectedOut = App List expectedIn
{-| Decode a list
>>> input (list natural) "[1, 2, 3]"
[1,2,3]
-}
list :: Type a -> Type [a]
list = fmap Data.Foldable.toList . sequence
{-| Decode a `Vector`
>>> input (vector natural) "[1, 2, 3]"
[1,2,3]
-}
vector :: Type a -> Type (Vector a)
vector = fmap Data.Vector.fromList . list
{-| Decode a `Set` from a `List`
>>> input (setIgnoringDuplicates natural) "[1, 2, 3]"
fromList [1,2,3]
Duplicate elements are ignored.
>>> input (setIgnoringDuplicates natural) "[1, 1, 3]"
fromList [1,3]
-}
setIgnoringDuplicates :: (Ord a) => Type a -> Type (Data.Set.Set a)
setIgnoringDuplicates = fmap Data.Set.fromList . list
{-| Decode a `HashSet` from a `List`
>>> input (hashSetIgnoringDuplicates natural) "[1, 2, 3]"
fromList [1,2,3]
Duplicate elements are ignored.
>>> input (hashSetIgnoringDuplicates natural) "[1, 1, 3]"
fromList [1,3]
-}
hashSetIgnoringDuplicates :: (Hashable a, Ord a)
=> Type a
-> Type (Data.HashSet.HashSet a)
hashSetIgnoringDuplicates = fmap Data.HashSet.fromList . list
{-| Decode a `Set` from a `List` with distinct elements
>>> input (setFromDistinctList natural) "[1, 2, 3]"
fromList [1,2,3]
An error is thrown if the list contains duplicates.
> >>> input (setFromDistinctList natural) "[1, 1, 3]"
> *** Exception: Error: Failed extraction
>
> The expression type-checked successfully but the transformation to the target
> type failed with the following error:
>
> One duplicate element in the list: 1
>
> >>> input (setFromDistinctList natural) "[1, 1, 3, 3]"
> *** Exception: Error: Failed extraction
>
> The expression type-checked successfully but the transformation to the target
> type failed with the following error:
>
> 2 duplicates were found in the list, including 1
>
-}
setFromDistinctList :: (Ord a, Show a) => Type a -> Type (Data.Set.Set a)
setFromDistinctList = setHelper Data.Set.size Data.Set.fromList
{-| Decode a `HashSet` from a `List` with distinct elements
>>> input (hashSetFromDistinctList natural) "[1, 2, 3]"
fromList [1,2,3]
An error is thrown if the list contains duplicates.
> >>> input (hashSetFromDistinctList natural) "[1, 1, 3]"
> *** Exception: Error: Failed extraction
>
> The expression type-checked successfully but the transformation to the target
> type failed with the following error:
>
> One duplicate element in the list: 1
>
> >>> input (hashSetFromDistinctList natural) "[1, 1, 3, 3]"
> *** Exception: Error: Failed extraction
>
> The expression type-checked successfully but the transformation to the target
> type failed with the following error:
>
> 2 duplicates were found in the list, including 1
>
-}
hashSetFromDistinctList :: (Hashable a, Ord a, Show a)
=> Type a
-> Type (Data.HashSet.HashSet a)
hashSetFromDistinctList = setHelper Data.HashSet.size Data.HashSet.fromList
setHelper :: (Eq a, Foldable t, Show a)
=> (t a -> Int)
-> ([a] -> t a)
-> Type a
-> Type (t a)
setHelper size toSet (Type extractIn expectedIn) = Type extractOut expectedOut
where
extractOut (ListLit _ es) = case traverse extractIn es of
Success vSeq
| sameSize -> Success vSet
| otherwise -> extractError err
where
vList = Data.Foldable.toList vSeq
vSet = toSet vList
sameSize = size vSet == Data.Sequence.length vSeq
duplicates = vList Data.List.\\ Data.Foldable.toList vSet
err | length duplicates == 1 =
"One duplicate element in the list: "
<> (Data.Text.pack $ show $ head duplicates)
| otherwise = Data.Text.pack $ unwords
[ show $ length duplicates
, "duplicates were found in the list, including"
, show $ head duplicates
]
Failure f -> Failure f
extractOut expr = typeError expectedOut expr
expectedOut = App List expectedIn
{-| Decode a `Map` from a @toMap@ expression or generally a @Prelude.Map.Type@
>>> input (Dhall.map strictText bool) "toMap { a = True, b = False }"
fromList [("a",True),("b",False)]
>>> input (Dhall.map strictText bool) "[ { mapKey = \"foo\", mapValue = True } ]"
fromList [("foo",True)]
If there are duplicate @mapKey@s, later @mapValue@s take precedence:
>>> let expr = "[ { mapKey = 1, mapValue = True }, { mapKey = 1, mapValue = False } ]"
>>> input (Dhall.map natural bool) expr
fromList [(1,False)]
-}
map :: Ord k => Type k -> Type v -> Type (Map k v)
map k v = fmap Data.Map.fromList (list (pairFromMapEntry k v))
{-| Decode a `HashMap` from a @toMap@ expression or generally a @Prelude.Map.Type@
>>> input (Dhall.hashMap strictText bool) "toMap { a = True, b = False }"
fromList [("a",True),("b",False)]
>>> input (Dhall.hashMap strictText bool) "[ { mapKey = \"foo\", mapValue = True } ]"
fromList [("foo",True)]
If there are duplicate @mapKey@s, later @mapValue@s take precedence:
>>> let expr = "[ { mapKey = 1, mapValue = True }, { mapKey = 1, mapValue = False } ]"
>>> input (Dhall.hashMap natural bool) expr
fromList [(1,False)]
-}
hashMap :: (Eq k, Hashable k) => Type k -> Type v -> Type (HashMap k v)
hashMap k v = fmap HashMap.fromList (list (pairFromMapEntry k v))
{-| Decode a tuple from a @Prelude.Map.Entry@ record
>>> input (pairFromMapEntry strictText natural) "{ mapKey = \"foo\", mapValue = 3 }"
("foo",3)
-}
pairFromMapEntry :: Type k -> Type v -> Type (k, v)
pairFromMapEntry k v = Type extractOut expectedOut
where
extractOut (RecordLit kvs)
| Just key <- Dhall.Map.lookup "mapKey" kvs
, Just value <- Dhall.Map.lookup "mapValue" kvs
= liftA2 (,) (extract k key) (extract v value)
extractOut expr = typeError expectedOut expr
expectedOut = Record (Dhall.Map.fromList [("mapKey", expected k), ("mapValue", expected v)])
{-| Decode @()@ from an empty record.
>>> input unit "{=}" -- GHC doesn't print the result if it is ()
-}
unit :: Type ()
unit = Type extractOut expectedOut
where
extractOut (RecordLit fields)
| Data.Foldable.null fields = pure ()
extractOut expr = typeError (Record mempty) expr
expectedOut = Record mempty
{-| Decode 'Void' from an empty union.
Since @<>@ is uninhabited, @'input' 'void'@ will always fail.
-}
void :: Type Void
void = union mempty
{-| Decode a `String`
>>> input string "\"ABC\""
"ABC"
-}
string :: Type String
string = Data.Text.Lazy.unpack <$> lazyText
{-| Given a pair of `Type`s, decode a tuple-record into their pairing.
>>> input (pair natural bool) "{ _1 = 42, _2 = False }"
(42,False)
-}
pair :: Type a -> Type b -> Type (a, b)
pair l r = Type extractOut expectedOut
where
extractOut expr@(RecordLit fields) =
(,) <$> ( Data.Maybe.maybe (typeError expectedOut expr) (extract l) $ Dhall.Map.lookup "_1" fields)
<*> ( Data.Maybe.maybe (typeError expectedOut expr) (extract r) $ Dhall.Map.lookup "_2" fields)
extractOut expr = typeError expectedOut expr
expectedOut =
Record
(Dhall.Map.fromList
[ ("_1", expected l)
, ("_2", expected r)
]
)
{-| Any value that implements `FromDhall` can be automatically decoded based on
the inferred return type of `input`
>>> input auto "[1, 2, 3]" :: IO (Vector Natural)
[1,2,3]
>>> input auto "toMap { a = False, b = True }" :: IO (Map Text Bool)
fromList [("a",False),("b",True)]
This class auto-generates a default implementation for records that
implement `Generic`. This does not auto-generate an instance for recursive
types.
-}
class FromDhall a where
autoWith:: InterpretOptions -> Type a
default autoWith
:: (Generic a, GenericFromDhall (Rep a)) => InterpretOptions -> Type a
autoWith options = fmap GHC.Generics.to (evalState (genericAutoWith options) 1)
{-| A compatibility alias for `FromDhall`
This will eventually be removed.
-}
type Interpret = FromDhall
instance FromDhall Void where
autoWith _ = void
instance FromDhall () where
autoWith _ = unit
instance FromDhall Bool where
autoWith _ = bool
instance FromDhall Natural where
autoWith _ = natural
instance FromDhall Integer where
autoWith _ = integer
instance FromDhall Scientific where
autoWith _ = scientific
instance FromDhall Double where
autoWith _ = double
instance {-# OVERLAPS #-} FromDhall [Char] where
autoWith _ = string
instance FromDhall Data.Text.Lazy.Text where
autoWith _ = lazyText
instance FromDhall Text where
autoWith _ = strictText
instance FromDhall a => FromDhall (Maybe a) where
autoWith opts = maybe (autoWith opts)
instance FromDhall a => FromDhall (Seq a) where
autoWith opts = sequence (autoWith opts)
instance FromDhall a => FromDhall [a] where
autoWith opts = list (autoWith opts)
instance FromDhall a => FromDhall (Vector a) where
autoWith opts = vector (autoWith opts)
{-| Note that this instance will throw errors in the presence of duplicates in
the list. To ignore duplicates, use `setIgnoringDuplicates`.
-}
instance (FromDhall a, Ord a, Show a) => FromDhall (Data.Set.Set a) where
autoWith opts = setFromDistinctList (autoWith opts)
{-| Note that this instance will throw errors in the presence of duplicates in
the list. To ignore duplicates, use `hashSetIgnoringDuplicates`.
-}
instance (FromDhall a, Hashable a, Ord a, Show a) => FromDhall (Data.HashSet.HashSet a) where
autoWith opts = hashSetFromDistinctList (autoWith opts)
instance (Ord k, FromDhall k, FromDhall v) => FromDhall (Map k v) where
autoWith opts = Dhall.map (autoWith opts) (autoWith opts)
instance (Eq k, Hashable k, FromDhall k, FromDhall v) => FromDhall (HashMap k v) where
autoWith opts = Dhall.hashMap (autoWith opts) (autoWith opts)
instance (ToDhall a, FromDhall b) => FromDhall (a -> b) where
autoWith opts = Type extractOut expectedOut
where
normalizer_ = Just (inputNormalizer opts)
-- ToDo
extractOut e = pure (\i -> case extractIn (Dhall.Core.normalizeWith normalizer_ (App e (embed i))) of
Success o -> o
Failure _e -> error "FromDhall: You cannot decode a function if it does not have the correct type" )
expectedOut = Pi "_" declared expectedIn
InputType {..} = injectWith opts
Type extractIn expectedIn = autoWith opts
instance (FromDhall a, FromDhall b) => FromDhall (a, b)
{-| Use the default options for interpreting a configuration file
> auto = autoWith defaultInterpretOptions
-}
auto :: FromDhall a => Type a
auto = autoWith defaultInterpretOptions
{-| This type is exactly the same as `Data.Fix.Fix` except with a different
`FromDhall` instance. This intermediate type simplies the implementation
of the inner loop for the `FromDhall` instance for `Fix`
-}
newtype Result f = Result { _unResult :: f (Result f) }
resultToFix :: Functor f => Result f -> Fix f
resultToFix (Result x) = Fix (fmap resultToFix x)
instance FromDhall (f (Result f)) => FromDhall (Result f) where
autoWith options = Type { expected = expected_, extract = extract_ }
where
expected_ = "result"
extract_ (App _ expression) = do
fmap Result (extract (autoWith options) expression)
extract_ expression = do
typeError expression expected_
-- | You can use this instance to marshal recursive types from Dhall to Haskell.
--
-- Here is an example use of this instance:
--
-- > {-# LANGUAGE DeriveAnyClass #-}
-- > {-# LANGUAGE DeriveFoldable #-}
-- > {-# LANGUAGE DeriveFunctor #-}
-- > {-# LANGUAGE DeriveTraversable #-}
-- > {-# LANGUAGE DeriveGeneric #-}
-- > {-# LANGUAGE KindSignatures #-}
-- > {-# LANGUAGE QuasiQuotes #-}
-- > {-# LANGUAGE StandaloneDeriving #-}
-- > {-# LANGUAGE TypeFamilies #-}
-- > {-# LANGUAGE TemplateHaskell #-}
-- >
-- > import Data.Fix (Fix(..))
-- > import Data.Text (Text)
-- > import Dhall (FromDhall)
-- > import GHC.Generics (Generic)
-- > import Numeric.Natural (Natural)
-- >
-- > import qualified Data.Fix as Fix
-- > import qualified Data.Functor.Foldable as Foldable
-- > import qualified Data.Functor.Foldable.TH as TH
-- > import qualified Dhall
-- > import qualified NeatInterpolation
-- >
-- > data Expr
-- > = Lit Natural
-- > | Add Expr Expr
-- > | Mul Expr Expr
-- > deriving (Show)
-- >
-- > TH.makeBaseFunctor ''Expr
-- >
-- > deriving instance Generic (ExprF a)
-- > deriving instance FromDhall a => FromDhall (ExprF a)
-- >
-- > example :: Text
-- > example = [NeatInterpolation.text|
-- > \(Expr : Type)
-- > -> let ExprF =
-- > < LitF :
-- > { _1 : Natural }
-- > | AddF :
-- > { _1 : Expr, _2 : Expr }
-- > | MulF :
-- > { _1 : Expr, _2 : Expr }
-- > >
-- >
-- > in \(Fix : ExprF -> Expr)
-- > -> let Lit = \(x : Natural) -> Fix (ExprF.LitF { _1 = x })
-- >
-- > let Add =
-- > \(x : Expr)
-- > -> \(y : Expr)
-- > -> Fix (ExprF.AddF { _1 = x, _2 = y })
-- >
-- > let Mul =
-- > \(x : Expr)
-- > -> \(y : Expr)
-- > -> Fix (ExprF.MulF { _1 = x, _2 = y })
-- >
-- > in Add (Mul (Lit 3) (Lit 7)) (Add (Lit 1) (Lit 2))
-- > |]
-- >
-- > convert :: Fix ExprF -> Expr
-- > convert = Fix.cata Foldable.embed
-- >
-- > main :: IO ()
-- > main = do
-- > x <- Dhall.input Dhall.auto example :: IO (Fix ExprF)
-- >
-- > print (convert x :: Expr)
instance (Functor f, FromDhall (f (Result f))) => FromDhall (Fix f) where
autoWith options = Type { expected = expected_, extract = extract_ }
where
expected_ =
Pi "result" (Const Dhall.Core.Type)
(Pi "Make" (Pi "_" (expected (autoWith options :: Type (f (Result f)))) "result")
"result"
)
extract_ expression0 = go0 (Dhall.Core.alphaNormalize expression0)
where
go0 (Lam _ _ (Lam _ _ expression1)) =
fmap resultToFix (extract (autoWith options) expression1)
go0 _ = typeError expected_ expression0
{-| `genericAuto` is the default implementation for `auto` if you derive
`FromDhall`. The difference is that you can use `genericAuto` without
having to explicitly provide a `FromDhall` instance for a type as long as
the type derives `Generic`
-}
genericAuto :: (Generic a, GenericFromDhall (Rep a)) => Type a
genericAuto = fmap to (evalState (genericAutoWith defaultInterpretOptions) 1)
{-| Use these options to tweak how Dhall derives a generic implementation of
`FromDhall`
-}
data InterpretOptions = InterpretOptions
{ fieldModifier :: Text -> Text
-- ^ Function used to transform Haskell field names into their corresponding
-- Dhall field names
, constructorModifier :: Text -> Text
-- ^ Function used to transform Haskell constructor names into their
-- corresponding Dhall alternative names
, singletonConstructors :: SingletonConstructors
-- ^ Specify how to handle constructors with only one field. The default is
-- `Wrapped` for backwards compatibility but will eventually be changed to
-- `Smart`
, inputNormalizer :: Dhall.Core.ReifiedNormalizer Void
-- ^ This is only used by the `FromDhall` instance for functions in order
-- to normalize the function input before marshaling the input into a
-- Dhall expression
}
{-| This type specifies how to model a Haskell constructor with 1 field in
Dhall
For example, consider the following Haskell datatype definition:
> data Example = Foo { x :: Double } | Bar Double
Depending on which option you pick, the corresponding Dhall type could be:
> < Foo : Double | Bar : Double > -- Bare
> < Foo : { x : Double } | Bar : { _1 : Double } > -- Wrapped
> < Foo : { x : Double } | Bar : Double > -- Smart
-}
data SingletonConstructors
= Bare
-- ^ Never wrap the field in a record
| Wrapped
-- ^ Always wrap the field in a record
| Smart
-- ^ Only fields in a record if they are named
{-| Default interpret options, which you can tweak or override, like this:
> autoWith
> (defaultInterpretOptions { fieldModifier = Data.Text.Lazy.dropWhile (== '_') })
-}
defaultInterpretOptions :: InterpretOptions
defaultInterpretOptions = InterpretOptions
{ fieldModifier =
id
, constructorModifier =
id
, singletonConstructors =
Wrapped
, inputNormalizer =
Dhall.Core.ReifiedNormalizer (const (pure Nothing))
}
{-| This is the underlying class that powers the `FromDhall` class's support
for automatically deriving a generic implementation
-}
class GenericFromDhall f where
genericAutoWith :: InterpretOptions -> State Int (Type (f a))
instance GenericFromDhall f => GenericFromDhall (M1 D d f) where
genericAutoWith options = do
res <- genericAutoWith options
pure (fmap M1 res)
instance GenericFromDhall V1 where
genericAutoWith _ = pure Type {..}
where
extract expr = typeError expected expr
expected = Union mempty
unsafeExpectUnion
:: Text -> Expr Src Void -> Dhall.Map.Map Text (Maybe (Expr Src Void))
unsafeExpectUnion _ (Union kts) =
kts
unsafeExpectUnion name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
unsafeExpectRecord
:: Text -> Expr Src Void -> Dhall.Map.Map Text (Expr Src Void)
unsafeExpectRecord _ (Record kts) =
kts
unsafeExpectRecord name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
unsafeExpectUnionLit
:: Text
-> Expr Src Void
-> (Text, Maybe (Expr Src Void))
unsafeExpectUnionLit _ (Field (Union _) k) =
(k, Nothing)
unsafeExpectUnionLit _ (App (Field (Union _) k) v) =
(k, Just v)
unsafeExpectUnionLit name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
unsafeExpectRecordLit
:: Text -> Expr Src Void -> Dhall.Map.Map Text (Expr Src Void)
unsafeExpectRecordLit _ (RecordLit kvs) =
kvs
unsafeExpectRecordLit name expression =
Dhall.Core.internalError
(name <> ": Unexpected constructor: " <> Dhall.Core.pretty expression)
notEmptyRecordLit :: Expr s a -> Maybe (Expr s a)
notEmptyRecordLit e = case e of
RecordLit m | null m -> Nothing
_ -> Just e
notEmptyRecord :: Expr s a -> Maybe (Expr s a)
notEmptyRecord e = case e of
Record m | null m -> Nothing
_ -> Just e
extractUnionConstructor
:: Expr s a -> Maybe (Text, Expr s a, Dhall.Map.Map Text (Maybe (Expr s a)))
extractUnionConstructor (App (Field (Union kts) fld) e) =
return (fld, e, Dhall.Map.delete fld kts)
extractUnionConstructor (Field (Union kts) fld) =
return (fld, RecordLit mempty, Dhall.Map.delete fld kts)
extractUnionConstructor _ =
empty
instance (Constructor c1, Constructor c2, GenericFromDhall f1, GenericFromDhall f2) => GenericFromDhall (M1 C c1 f1 :+: M1 C c2 f2) where
genericAutoWith options@(InterpretOptions {..}) = pure (Type {..})
where
nL :: M1 i c1 f1 a
nL = undefined
nR :: M1 i c2 f2 a
nR = undefined
nameL = constructorModifier (Data.Text.pack (conName nL))
nameR = constructorModifier (Data.Text.pack (conName nR))
extract e0 = do
case extractUnionConstructor e0 of
Just (name, e1, _) ->
if
| name == nameL -> fmap (L1 . M1) (extractL e1)
| name == nameR -> fmap (R1 . M1) (extractR e1)
| otherwise -> typeError expected e0
_ -> typeError expected e0
expected =
Union
(Dhall.Map.fromList
[ (nameL, notEmptyRecord expectedL)
, (nameR, notEmptyRecord expectedR)
]
)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
instance (Constructor c, GenericFromDhall (f :+: g), GenericFromDhall h) => GenericFromDhall ((f :+: g) :+: M1 C c h) where
genericAutoWith options@(InterpretOptions {..}) = pure (Type {..})
where
n :: M1 i c h a
n = undefined
name = constructorModifier (Data.Text.pack (conName n))
extract u = case extractUnionConstructor u of
Just (name', e, _) ->
if
| name == name' -> fmap (R1 . M1) (extractR e)
| otherwise -> fmap L1 (extractL u)
Nothing -> typeError expected u
expected =
Union (Dhall.Map.insert name (notEmptyRecord expectedR) ktsL)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
ktsL = unsafeExpectUnion "genericAutoWith (:+:)" expectedL
instance (Constructor c, GenericFromDhall f, GenericFromDhall (g :+: h)) => GenericFromDhall (M1 C c f :+: (g :+: h)) where
genericAutoWith options@(InterpretOptions {..}) = pure (Type {..})
where
n :: M1 i c f a
n = undefined
name = constructorModifier (Data.Text.pack (conName n))
extract u = case extractUnionConstructor u of
Just (name', e, _) ->
if
| name == name' -> fmap (L1 . M1) (extractL e)
| otherwise -> fmap R1 (extractR u)
_ -> typeError expected u
expected =
Union (Dhall.Map.insert name (notEmptyRecord expectedL) ktsR)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
ktsR = unsafeExpectUnion "genericAutoWith (:+:)" expectedR
instance (GenericFromDhall (f :+: g), GenericFromDhall (h :+: i)) => GenericFromDhall ((f :+: g) :+: (h :+: i)) where
genericAutoWith options = pure (Type {..})
where
extract e = fmap L1 (extractL e) `ealt` fmap R1 (extractR e)
expected = Union (Dhall.Map.union ktsL ktsR)
Type extractL expectedL = evalState (genericAutoWith options) 1
Type extractR expectedR = evalState (genericAutoWith options) 1
ktsL = unsafeExpectUnion "genericAutoWith (:+:)" expectedL
ktsR = unsafeExpectUnion "genericAutoWith (:+:)" expectedR
instance GenericFromDhall f => GenericFromDhall (M1 C c f) where
genericAutoWith options = do
res <- genericAutoWith options
pure (fmap M1 res)
instance GenericFromDhall U1 where
genericAutoWith _ = pure (Type {..})
where
extract _ = pure U1
expected = Record (Dhall.Map.fromList [])
getSelName :: Selector s => M1 i s f a -> State Int Text
getSelName n = case selName n of
"" -> do i <- get
put (i + 1)
pure (Data.Text.pack ("_" ++ show i))
nn -> pure (Data.Text.pack nn)
instance (GenericFromDhall (f :*: g), GenericFromDhall (h :*: i)) => GenericFromDhall ((f :*: g) :*: (h :*: i)) where
genericAutoWith options = do
Type extractL expectedL <- genericAutoWith options
Type extractR expectedR <- genericAutoWith options
let ktsL = unsafeExpectRecord "genericAutoWith (:*:)" expectedL
let ktsR = unsafeExpectRecord "genericAutoWith (:*:)" expectedR
let expected = Record (Dhall.Map.union ktsL ktsR)
let extract expression =
liftA2 (:*:) (extractL expression) (extractR expression)
return (Type {..})
instance (GenericFromDhall (f :*: g), Selector s, FromDhall a) => GenericFromDhall ((f :*: g) :*: M1 S s (K1 i a)) where
genericAutoWith options@InterpretOptions{..} = do
let nR :: M1 S s (K1 i a) r
nR = undefined
nameR <- fmap fieldModifier (getSelName nR)
Type extractL expectedL <- genericAutoWith options
let Type extractR expectedR = autoWith options
let ktsL = unsafeExpectRecord "genericAutoWith (:*:)" expectedL
let expected = Record (Dhall.Map.insert nameR expectedR ktsL)
let extract expression = do
let die = typeError expected expression
case expression of
RecordLit kvs ->
case Dhall.Map.lookup nameR kvs of
Just expressionR ->
liftA2 (:*:)
(extractL expression)
(fmap (M1 . K1) (extractR expressionR))
_ -> die
_ -> die
return (Type {..})
instance (Selector s, FromDhall a, GenericFromDhall (f :*: g)) => GenericFromDhall (M1 S s (K1 i a) :*: (f :*: g)) where
genericAutoWith options@InterpretOptions{..} = do
let nL :: M1 S s (K1 i a) r
nL = undefined
nameL <- fmap fieldModifier (getSelName nL)
let Type extractL expectedL = autoWith options
Type extractR expectedR <- genericAutoWith options
let ktsR = unsafeExpectRecord "genericAutoWith (:*:)" expectedR
let expected = Record (Dhall.Map.insert nameL expectedL ktsR)
let extract expression = do
let die = typeError expected expression
case expression of
RecordLit kvs ->
case Dhall.Map.lookup nameL kvs of
Just expressionL ->
liftA2 (:*:)
(fmap (M1 . K1) (extractL expressionL))
(extractR expression)
_ -> die
_ -> die
return (Type {..})
instance (Selector s1, Selector s2, FromDhall a1, FromDhall a2) => GenericFromDhall (M1 S s1 (K1 i1 a1) :*: M1 S s2 (K1 i2 a2)) where
genericAutoWith options@InterpretOptions{..} = do
let nL :: M1 S s1 (K1 i1 a1) r
nL = undefined
let nR :: M1 S s2 (K1 i2 a2) r
nR = undefined
nameL <- fmap fieldModifier (getSelName nL)
nameR <- fmap fieldModifier (getSelName nR)
let Type extractL expectedL = autoWith options
let Type extractR expectedR = autoWith options
let expected =
Record
(Dhall.Map.fromList
[ (nameL, expectedL)
, (nameR, expectedR)
]
)
let extract expression = do
let die = typeError expected expression
case expression of
RecordLit kvs -> do
case liftA2 (,) (Dhall.Map.lookup nameL kvs) (Dhall.Map.lookup nameR kvs) of
Just (expressionL, expressionR) ->
liftA2 (:*:)
(fmap (M1 . K1) (extractL expressionL))
(fmap (M1 . K1) (extractR expressionR))
Nothing -> die
_ -> die
return (Type {..})
instance (Selector s, FromDhall a) => GenericFromDhall (M1 S s (K1 i a)) where
genericAutoWith options@InterpretOptions{..} = do
let n :: M1 S s (K1 i a) r
n = undefined
name <- fmap fieldModifier (getSelName n)
let Type { extract = extract', expected = expected'} = autoWith options
let expected =
case singletonConstructors of
Bare ->
expected'
Smart | selName n == "" ->
expected'
_ ->
Record (Dhall.Map.singleton name expected')
let extract0 expression = fmap (M1 . K1) (extract' expression)
let extract1 expression = do
let die = typeError expected expression
case expression of
RecordLit kvs -> do
case Dhall.Map.lookup name kvs of
Just subExpression ->
fmap (M1 . K1) (extract' subExpression)
Nothing ->
die
_ -> do
die
let extract =
case singletonConstructors of
Bare -> extract0
Smart | selName n == "" -> extract0
_ -> extract1
return (Type {..})
{-| An @(InputType a)@ represents a way to marshal a value of type @\'a\'@ from
Haskell into Dhall
-}
data InputType a = InputType
{ embed :: a -> Expr Src Void
-- ^ Embeds a Haskell value as a Dhall expression
, declared :: Expr Src Void
-- ^ Dhall type of the Haskell value
}
instance Contravariant InputType where
contramap f (InputType embed declared) = InputType embed' declared
where
embed' x = embed (f x)
{-| This class is used by `FromDhall` instance for functions:
> instance (ToDhall a, FromDhall b) => FromDhall (a -> b)
You can convert Dhall functions with "simple" inputs (i.e. instances of this
class) into Haskell functions. This works by:
* Marshaling the input to the Haskell function into a Dhall expression (i.e.
@x :: Expr Src Void@)
* Applying the Dhall function (i.e. @f :: Expr Src Void@) to the Dhall input
(i.e. @App f x@)
* Normalizing the syntax tree (i.e. @normalize (App f x)@)
* Marshaling the resulting Dhall expression back into a Haskell value
-}
class ToDhall a where
injectWith :: InterpretOptions -> InputType a
default injectWith
:: (Generic a, GenericToDhall (Rep a)) => InterpretOptions -> InputType a
injectWith options
= contramap GHC.Generics.from (evalState (genericToDhallWith options) 1)
{-| A compatibility alias for `ToDhall`
This will eventually be removed.
-}
type Inject = ToDhall
{-| Use the default options for injecting a value
> inject = injectWith defaultInterpretOptions
-}
inject :: ToDhall a => InputType a
inject = injectWith defaultInterpretOptions
{-| Use the default options for injecting a value, whose structure is
determined generically.
This can be used when you want to use 'ToDhall' on types that you don't
want to define orphan instances for.
-}
genericToDhall
:: (Generic a, GenericToDhall (Rep a)) => InputType a
genericToDhall
= contramap GHC.Generics.from (evalState (genericToDhallWith defaultInterpretOptions) 1)
instance ToDhall Void where
injectWith _ = InputType {..}
where
embed = Data.Void.absurd
declared = Union mempty
instance ToDhall Bool where
injectWith _ = InputType {..}
where
embed = BoolLit
declared = Bool
instance ToDhall Data.Text.Lazy.Text where
injectWith _ = InputType {..}
where
embed text =
TextLit (Chunks [] (Data.Text.Lazy.toStrict text))
declared = Text
instance ToDhall Text where
injectWith _ = InputType {..}
where
embed text = TextLit (Chunks [] text)
declared = Text
instance {-# OVERLAPS #-} ToDhall String where
injectWith options =
contramap Data.Text.pack (injectWith options :: InputType Text)
instance ToDhall Natural where
injectWith _ = InputType {..}
where
embed = NaturalLit
declared = Natural
instance ToDhall Integer where
injectWith _ = InputType {..}
where
embed = IntegerLit
declared = Integer
instance ToDhall Int where
injectWith _ = InputType {..}
where
embed = IntegerLit . toInteger
declared = Integer
{-|
>>> embed inject (12 :: Word)
NaturalLit 12
-}
instance ToDhall Word where
injectWith _ = InputType {..}
where
embed = NaturalLit . fromIntegral
declared = Natural
{-|
>>> embed inject (12 :: Word8)
NaturalLit 12
-}
instance ToDhall Word8 where
injectWith _ = InputType {..}
where
embed = NaturalLit . fromIntegral
declared = Natural
{-|
>>> embed inject (12 :: Word16)
NaturalLit 12
-}
instance ToDhall Word16 where
injectWith _ = InputType {..}
where
embed = NaturalLit . fromIntegral
declared = Natural
{-|
>>> embed inject (12 :: Word32)
NaturalLit 12
-}
instance ToDhall Word32 where
injectWith _ = InputType {..}
where
embed = NaturalLit . fromIntegral
declared = Natural
{-|
>>> embed inject (12 :: Word64)
NaturalLit 12
-}
instance ToDhall Word64 where
injectWith _ = InputType {..}
where
embed = NaturalLit . fromIntegral
declared = Natural
instance ToDhall Double where
injectWith _ = InputType {..}
where
embed = DoubleLit . DhallDouble
declared = Double
instance ToDhall Scientific where
injectWith options =
contramap Data.Scientific.toRealFloat (injectWith options :: InputType Double)
instance ToDhall () where
injectWith _ = InputType {..}
where
embed = const (RecordLit mempty)
declared = Record mempty
instance ToDhall a => ToDhall (Maybe a) where
injectWith options = InputType embedOut declaredOut
where
embedOut (Just x ) = Some (embedIn x)
embedOut Nothing = App None declaredIn
InputType embedIn declaredIn = injectWith options
declaredOut = App Optional declaredIn
instance ToDhall a => ToDhall (Seq a) where
injectWith options = InputType embedOut declaredOut
where
embedOut xs = ListLit listType (fmap embedIn xs)
where
listType
| null xs = Just (App List declaredIn)
| otherwise = Nothing
declaredOut = App List declaredIn
InputType embedIn declaredIn = injectWith options
instance ToDhall a => ToDhall [a] where
injectWith = fmap (contramap Data.Sequence.fromList) injectWith
instance ToDhall a => ToDhall (Vector a) where
injectWith = fmap (contramap Data.Vector.toList) injectWith
{-| Note that the ouput list will be sorted
>>> let x = Data.Set.fromList ["mom", "hi" :: Text]
>>> prettyExpr $ embed inject x
[ "hi", "mom" ]
-}
instance ToDhall a => ToDhall (Data.Set.Set a) where
injectWith = fmap (contramap Data.Set.toAscList) injectWith
{-| Note that the ouput list may not be sorted
>>> let x = Data.HashSet.fromList ["hi", "mom" :: Text]
>>> prettyExpr $ embed inject x
[ "mom", "hi" ]
-}
instance ToDhall a => ToDhall (Data.HashSet.HashSet a) where
injectWith = fmap (contramap Data.HashSet.toList) injectWith
instance (ToDhall a, ToDhall b) => ToDhall (a, b)
{-| Embed a `Data.Map` as a @Prelude.Map.Type@
>>> prettyExpr $ embed inject (Data.Map.fromList [(1 :: Natural, True)])
[ { mapKey = 1, mapValue = True } ]
>>> prettyExpr $ embed inject (Data.Map.fromList [] :: Data.Map.Map Natural Bool)
[] : List { mapKey : Natural, mapValue : Bool }
-}
instance (ToDhall k, ToDhall v) => ToDhall (Data.Map.Map k v) where
injectWith options = InputType embedOut declaredOut
where
embedOut m = ListLit listType (mapEntries m)
where
listType
| Data.Map.null m = Just declaredOut
| otherwise = Nothing
declaredOut = App List (Record (Dhall.Map.fromList
[("mapKey", declaredK), ("mapValue", declaredV)]))
mapEntries = Data.Sequence.fromList . fmap recordPair . Data.Map.toList
recordPair (k, v) = RecordLit (Dhall.Map.fromList
[("mapKey", embedK k), ("mapValue", embedV v)])
InputType embedK declaredK = injectWith options
InputType embedV declaredV = injectWith options
{-| Embed a `Data.HashMap` as a @Prelude.Map.Type@
>>> prettyExpr $ embed inject (HashMap.fromList [(1 :: Natural, True)])
[ { mapKey = 1, mapValue = True } ]
>>> prettyExpr $ embed inject (HashMap.fromList [] :: HashMap Natural Bool)
[] : List { mapKey : Natural, mapValue : Bool }
-}
instance (ToDhall k, ToDhall v) => ToDhall (HashMap k v) where
injectWith options = InputType embedOut declaredOut
where
embedOut m = ListLit listType (mapEntries m)
where
listType
| HashMap.null m = Just declaredOut
| otherwise = Nothing
declaredOut = App List (Record (Dhall.Map.fromList
[("mapKey", declaredK), ("mapValue", declaredV)]))
mapEntries = Data.Sequence.fromList . fmap recordPair . HashMap.toList
recordPair (k, v) = RecordLit (Dhall.Map.fromList
[("mapKey", embedK k), ("mapValue", embedV v)])
InputType embedK declaredK = injectWith options
InputType embedV declaredV = injectWith options
{-| This is the underlying class that powers the `FromDhall` class's support
for automatically deriving a generic implementation
-}
class GenericToDhall f where
genericToDhallWith :: InterpretOptions -> State Int (InputType (f a))
instance GenericToDhall f => GenericToDhall (M1 D d f) where
genericToDhallWith options = do
res <- genericToDhallWith options
pure (contramap unM1 res)
instance GenericToDhall f => GenericToDhall (M1 C c f) where
genericToDhallWith options = do
res <- genericToDhallWith options
pure (contramap unM1 res)
instance (Selector s, ToDhall a) => GenericToDhall (M1 S s (K1 i a)) where
genericToDhallWith options@InterpretOptions{..} = do
let InputType { embed = embed', declared = declared' } =
injectWith options
let n :: M1 S s (K1 i a) r
n = undefined
name <- fieldModifier <$> getSelName n
let embed0 (M1 (K1 x)) = embed' x
let embed1 (M1 (K1 x)) =
RecordLit (Dhall.Map.singleton name (embed' x))
let embed =
case singletonConstructors of
Bare -> embed0
Smart | selName n == "" -> embed0
_ -> embed1
let declared =
case singletonConstructors of
Bare ->
declared'
Smart | selName n == "" ->
declared'
_ ->
Record (Dhall.Map.singleton name declared')
return (InputType {..})
instance (Constructor c1, Constructor c2, GenericToDhall f1, GenericToDhall f2) => GenericToDhall (M1 C c1 f1 :+: M1 C c2 f2) where
genericToDhallWith options@(InterpretOptions {..}) = pure (InputType {..})
where
embed (L1 (M1 l)) =
case notEmptyRecordLit (embedL l) of
Nothing ->
Field declared keyL
Just valL ->
App (Field declared keyL) valL
embed (R1 (M1 r)) =
case notEmptyRecordLit (embedR r) of
Nothing ->
Field declared keyR
Just valR ->
App (Field declared keyR) valR
declared =
Union
(Dhall.Map.fromList
[ (keyL, notEmptyRecord declaredL)
, (keyR, notEmptyRecord declaredR)
]
)
nL :: M1 i c1 f1 a
nL = undefined
nR :: M1 i c2 f2 a
nR = undefined
keyL = constructorModifier (Data.Text.pack (conName nL))
keyR = constructorModifier (Data.Text.pack (conName nR))
InputType embedL declaredL = evalState (genericToDhallWith options) 1
InputType embedR declaredR = evalState (genericToDhallWith options) 1
instance (Constructor c, GenericToDhall (f :+: g), GenericToDhall h) => GenericToDhall ((f :+: g) :+: M1 C c h) where
genericToDhallWith options@(InterpretOptions {..}) = pure (InputType {..})
where
embed (L1 l) =
case maybeValL of
Nothing -> Field declared keyL
Just valL -> App (Field declared keyL) valL
where
(keyL, maybeValL) =
unsafeExpectUnionLit "genericToDhallWith (:+:)" (embedL l)
embed (R1 (M1 r)) =
case notEmptyRecordLit (embedR r) of
Nothing -> Field declared keyR
Just valR -> App (Field declared keyR) valR
nR :: M1 i c h a
nR = undefined
keyR = constructorModifier (Data.Text.pack (conName nR))
declared = Union (Dhall.Map.insert keyR (notEmptyRecord declaredR) ktsL)
InputType embedL declaredL = evalState (genericToDhallWith options) 1
InputType embedR declaredR = evalState (genericToDhallWith options) 1
ktsL = unsafeExpectUnion "genericToDhallWith (:+:)" declaredL
instance (Constructor c, GenericToDhall f, GenericToDhall (g :+: h)) => GenericToDhall (M1 C c f :+: (g :+: h)) where
genericToDhallWith options@(InterpretOptions {..}) = pure (InputType {..})
where
embed (L1 (M1 l)) =
case notEmptyRecordLit (embedL l) of
Nothing -> Field declared keyL
Just valL -> App (Field declared keyL) valL
embed (R1 r) =
case maybeValR of
Nothing -> Field declared keyR
Just valR -> App (Field declared keyR) valR
where
(keyR, maybeValR) =
unsafeExpectUnionLit "genericToDhallWith (:+:)" (embedR r)
nL :: M1 i c f a
nL = undefined
keyL = constructorModifier (Data.Text.pack (conName nL))
declared = Union (Dhall.Map.insert keyL (notEmptyRecord declaredL) ktsR)
InputType embedL declaredL = evalState (genericToDhallWith options) 1
InputType embedR declaredR = evalState (genericToDhallWith options) 1
ktsR = unsafeExpectUnion "genericToDhallWith (:+:)" declaredR
instance (GenericToDhall (f :+: g), GenericToDhall (h :+: i)) => GenericToDhall ((f :+: g) :+: (h :+: i)) where
genericToDhallWith options = pure (InputType {..})
where
embed (L1 l) =
case maybeValL of
Nothing -> Field declared keyL
Just valL -> App (Field declared keyL) valL
where
(keyL, maybeValL) =
unsafeExpectUnionLit "genericToDhallWith (:+:)" (embedL l)
embed (R1 r) =
case maybeValR of
Nothing -> Field declared keyR
Just valR -> App (Field declared keyR) valR
where
(keyR, maybeValR) =
unsafeExpectUnionLit "genericToDhallWith (:+:)" (embedR r)
declared = Union (Dhall.Map.union ktsL ktsR)
InputType embedL declaredL = evalState (genericToDhallWith options) 1
InputType embedR declaredR = evalState (genericToDhallWith options) 1
ktsL = unsafeExpectUnion "genericToDhallWith (:+:)" declaredL
ktsR = unsafeExpectUnion "genericToDhallWith (:+:)" declaredR
instance (GenericToDhall (f :*: g), GenericToDhall (h :*: i)) => GenericToDhall ((f :*: g) :*: (h :*: i)) where
genericToDhallWith options = do
InputType embedL declaredL <- genericToDhallWith options
InputType embedR declaredR <- genericToDhallWith options
let embed (l :*: r) =
RecordLit (Dhall.Map.union mapL mapR)
where
mapL =
unsafeExpectRecordLit "genericToDhallWith (:*:)" (embedL l)
mapR =
unsafeExpectRecordLit "genericToDhallWith (:*:)" (embedR r)
let declared = Record (Dhall.Map.union mapL mapR)
where
mapL = unsafeExpectRecord "genericToDhallWith (:*:)" declaredL
mapR = unsafeExpectRecord "genericToDhallWith (:*:)" declaredR
pure (InputType {..})
instance (GenericToDhall (f :*: g), Selector s, ToDhall a) => GenericToDhall ((f :*: g) :*: M1 S s (K1 i a)) where
genericToDhallWith options@InterpretOptions{..} = do
let nR :: M1 S s (K1 i a) r
nR = undefined
nameR <- fmap fieldModifier (getSelName nR)
InputType embedL declaredL <- genericToDhallWith options
let InputType embedR declaredR = injectWith options
let embed (l :*: M1 (K1 r)) =
RecordLit (Dhall.Map.insert nameR (embedR r) mapL)
where
mapL =
unsafeExpectRecordLit "genericToDhallWith (:*:)" (embedL l)
let declared = Record (Dhall.Map.insert nameR declaredR mapL)
where
mapL = unsafeExpectRecord "genericToDhallWith (:*:)" declaredL
return (InputType {..})
instance (Selector s, ToDhall a, GenericToDhall (f :*: g)) => GenericToDhall (M1 S s (K1 i a) :*: (f :*: g)) where
genericToDhallWith options@InterpretOptions{..} = do
let nL :: M1 S s (K1 i a) r
nL = undefined
nameL <- fmap fieldModifier (getSelName nL)
let InputType embedL declaredL = injectWith options
InputType embedR declaredR <- genericToDhallWith options
let embed (M1 (K1 l) :*: r) =
RecordLit (Dhall.Map.insert nameL (embedL l) mapR)
where
mapR =
unsafeExpectRecordLit "genericToDhallWith (:*:)" (embedR r)
let declared = Record (Dhall.Map.insert nameL declaredL mapR)
where
mapR = unsafeExpectRecord "genericToDhallWith (:*:)" declaredR
return (InputType {..})
instance (Selector s1, Selector s2, ToDhall a1, ToDhall a2) => GenericToDhall (M1 S s1 (K1 i1 a1) :*: M1 S s2 (K1 i2 a2)) where
genericToDhallWith options@InterpretOptions{..} = do
let nL :: M1 S s1 (K1 i1 a1) r
nL = undefined
let nR :: M1 S s2 (K1 i2 a2) r
nR = undefined
nameL <- fmap fieldModifier (getSelName nL)
nameR <- fmap fieldModifier (getSelName nR)
let InputType embedL declaredL = injectWith options
let InputType embedR declaredR = injectWith options
let embed (M1 (K1 l) :*: M1 (K1 r)) =
RecordLit
(Dhall.Map.fromList
[ (nameL, embedL l), (nameR, embedR r) ]
)
let declared =
Record
(Dhall.Map.fromList
[ (nameL, declaredL), (nameR, declaredR) ]
)
return (InputType {..})
instance GenericToDhall U1 where
genericToDhallWith _ = pure (InputType {..})
where
embed _ = RecordLit mempty
declared = Record mempty
{-| The 'RecordType' applicative functor allows you to build a 'Type' parser
from a Dhall record.
For example, let's take the following Haskell data type:
>>> :{
data Project = Project
{ projectName :: Text
, projectDescription :: Text
, projectStars :: Natural
}
:}
And assume that we have the following Dhall record that we would like to
parse as a @Project@:
> { name =
> "dhall-haskell"
> , description =
> "A configuration language guaranteed to terminate"
> , stars =
> 289
> }
Our parser has type 'Type' @Project@, but we can't build that out of any
smaller parsers, as 'Type's cannot be combined (they are only 'Functor's).
However, we can use a 'RecordType' to build a 'Type' for @Project@:
>>> :{
project :: Type Project
project =
record
( Project <$> field "name" strictText
<*> field "description" strictText
<*> field "stars" natural
)
:}
-}
newtype RecordType a =
RecordType
( Data.Functor.Product.Product
( Control.Applicative.Const
( Dhall.Map.Map
Text
( Expr Src Void )
)
)
( Data.Functor.Compose.Compose
( (->) ( Expr Src Void ) )
(Extractor Src Void)
)
a
)
deriving (Functor, Applicative)
-- | Run a 'RecordType' parser to build a 'Type' parser.
record :: RecordType a -> Dhall.Type a
record ( RecordType ( Data.Functor.Product.Pair ( Control.Applicative.Const fields ) ( Data.Functor.Compose.Compose extractF ) ) ) =
Type
{ extract =
extractF
, expected =
Record fields
}
-- | Parse a single field of a record.
field :: Text -> Type a -> RecordType a
field key valueType@(Type extract expected) =
let
extractBody expr@(RecordLit fields) = case Dhall.Map.lookup key fields of
Just v -> extract v
_ -> typeError expected expr
extractBody expr = typeError expected expr
in
RecordType
( Data.Functor.Product.Pair
( Control.Applicative.Const
( Dhall.Map.singleton
key
( Dhall.expected valueType )
)
)
( Data.Functor.Compose.Compose extractBody )
)
{-| The 'UnionType' monoid allows you to build a 'Type' parser
from a Dhall union
For example, let's take the following Haskell data type:
>>> :{
data Status = Queued Natural
| Result Text
| Errored Text
:}
And assume that we have the following Dhall union that we would like to
parse as a @Status@:
> < Result : Text
> | Queued : Natural
> | Errored : Text
> >.Result "Finish successfully"
Our parser has type 'Type' @Status@, but we can't build that out of any
smaller parsers, as 'Type's cannot be combined (they are only 'Functor's).
However, we can use a 'UnionType' to build a 'Type' for @Status@:
>>> :{
status :: Type Status
status = union
( ( Queued <$> constructor "Queued" natural )
<> ( Result <$> constructor "Result" strictText )
<> ( Errored <$> constructor "Errored" strictText )
)
:}
-}
newtype UnionType a =
UnionType
( Data.Functor.Compose.Compose (Dhall.Map.Map Text) Type a )
deriving (Functor)
instance Data.Semigroup.Semigroup (UnionType a) where
(<>) = coerce ((<>) :: Dhall.Map.Map Text (Type a) -> Dhall.Map.Map Text (Type a) -> Dhall.Map.Map Text (Type a))
instance Monoid (UnionType a) where
mempty = coerce (mempty :: Dhall.Map.Map Text (Type a))
mappend = (Data.Semigroup.<>)
-- | Run a 'UnionType' parser to build a 'Type' parser.
union :: UnionType a -> Type a
union (UnionType (Data.Functor.Compose.Compose mp)) = Type
{ extract = extractF
, expected = Union expect
}
where
expect = (notEmptyRecord . Dhall.expected) <$> mp
extractF e0 =
let result = do
(fld, e1, rest) <- extractUnionConstructor e0
t <- Dhall.Map.lookup fld mp
guard $ Dhall.Core.Union rest `Dhall.Core.judgmentallyEqual`
Dhall.Core.Union (Dhall.Map.delete fld expect)
pure (t, e1)
in Data.Maybe.maybe (typeError (Union expect) e0) (uncurry extract) result
-- | Parse a single constructor of a union
constructor :: Text -> Type a -> UnionType a
constructor key valueType = UnionType
( Data.Functor.Compose.Compose (Dhall.Map.singleton key valueType) )
{-| The 'RecordInputType' divisible (contravariant) functor allows you to build
an 'InputType' injector for a Dhall record.
For example, let's take the following Haskell data type:
>>> :{
data Project = Project
{ projectName :: Text
, projectDescription :: Text
, projectStars :: Natural
}
:}
And assume that we have the following Dhall record that we would like to
parse as a @Project@:
> { name =
> "dhall-haskell"
> , description =
> "A configuration language guaranteed to terminate"
> , stars =
> 289
> }
Our injector has type 'InputType' @Project@, but we can't build that out of any
smaller injectors, as 'InputType's cannot be combined (they are only 'Contravariant's).
However, we can use an 'InputRecordType' to build an 'InputType' for @Project@:
>>> :{
injectProject :: InputType Project
injectProject =
inputRecord
( adapt >$< inputFieldWith "name" inject
>*< inputFieldWith "description" inject
>*< inputFieldWith "stars" inject
)
where
adapt (Project{..}) = (projectName, (projectDescription, projectStars))
:}
Or, since we are simply using the `ToDhall` instance to inject each field, we could write
>>> :{
injectProject :: InputType Project
injectProject =
inputRecord
( adapt >$< inputField "name"
>*< inputField "description"
>*< inputField "stars"
)
where
adapt (Project{..}) = (projectName, (projectDescription, projectStars))
:}
-}
-- | Infix 'divided'
(>*<) :: Divisible f => f a -> f b -> f (a, b)
(>*<) = divided
infixr 5 >*<
-- | Intermediate type used for building a `ToDhall` instance for a record
newtype RecordInputType a
= RecordInputType (Dhall.Map.Map Text (InputType a))
instance Contravariant RecordInputType where
contramap f (RecordInputType inputTypeRecord) = RecordInputType $ contramap f <$> inputTypeRecord
instance Divisible RecordInputType where
divide f (RecordInputType bInputTypeRecord) (RecordInputType cInputTypeRecord) =
RecordInputType
$ Dhall.Map.union
((contramap $ fst . f) <$> bInputTypeRecord)
((contramap $ snd . f) <$> cInputTypeRecord)
conquer = RecordInputType mempty
{-| Specify how to encode one field of a record by supplying an explicit
`InputType` for that field
-}
inputFieldWith :: Text -> InputType a -> RecordInputType a
inputFieldWith name inputType = RecordInputType $ Dhall.Map.singleton name inputType
{-| Specify how to encode one field of a record using the default `ToDhall`
instance for that type
-}
inputField :: ToDhall a => Text -> RecordInputType a
inputField name = inputFieldWith name inject
-- | Convert a `RecordInputType` into the equivalent `InputType`
inputRecord :: RecordInputType a -> InputType a
inputRecord (RecordInputType inputTypeRecord) = InputType makeRecordLit recordType
where
recordType = Record $ declared <$> inputTypeRecord
makeRecordLit x = RecordLit $ (($ x) . embed) <$> inputTypeRecord
{-| 'UnionInputType' allows you to build an 'InputType' injector for a Dhall
record.
For example, let's take the following Haskell data type:
>>> :{
data Status = Queued Natural
| Result Text
| Errored Text
:}
And assume that we have the following Dhall union that we would like to
parse as a @Status@:
> < Result : Text
> | Queued : Natural
> | Errored : Text
> >.Result "Finish successfully"
Our injector has type 'InputType' @Status@, but we can't build that out of any
smaller injectors, as 'InputType's cannot be combined.
However, we can use an 'UnionInputType' to build an 'InputType' for @Status@:
>>> :{
injectStatus :: InputType Status
injectStatus = adapt >$< inputUnion
( inputConstructorWith "Queued" inject
>|< inputConstructorWith "Result" inject
>|< inputConstructorWith "Errored" inject
)
where
adapt (Queued n) = Left n
adapt (Result t) = Right (Left t)
adapt (Errored e) = Right (Right e)
:}
Or, since we are simply using the `ToDhall` instance to inject each branch, we could write
>>> :{
injectStatus :: InputType Status
injectStatus = adapt >$< inputUnion
( inputConstructor "Queued"
>|< inputConstructor "Result"
>|< inputConstructor "Errored"
)
where
adapt (Queued n) = Left n
adapt (Result t) = Right (Left t)
adapt (Errored e) = Right (Right e)
:}
-}
newtype UnionInputType a =
UnionInputType
( Data.Functor.Product.Product
( Control.Applicative.Const
( Dhall.Map.Map
Text
( Expr Src Void )
)
)
( Op (Text, Expr Src Void) )
a
)
deriving (Contravariant)
-- | Combines two 'UnionInputType' values. See 'UnionInputType' for usage
-- notes.
--
-- Ideally, this matches 'Data.Functor.Contravariant.Divisible.chosen';
-- however, this allows 'UnionInputType' to not need a 'Divisible' instance
-- itself (since no instance is possible).
(>|<) :: UnionInputType a -> UnionInputType b -> UnionInputType (Either a b)
UnionInputType (Data.Functor.Product.Pair (Control.Applicative.Const mx) (Op fx))
>|< UnionInputType (Data.Functor.Product.Pair (Control.Applicative.Const my) (Op fy)) =
UnionInputType
( Data.Functor.Product.Pair
( Control.Applicative.Const (mx <> my) )
( Op (either fx fy) )
)
infixr 5 >|<
-- | Convert a `UnionInputType` into the equivalent `InputType`
inputUnion :: UnionInputType a -> InputType a
inputUnion ( UnionInputType ( Data.Functor.Product.Pair ( Control.Applicative.Const fields ) ( Op embedF ) ) ) =
InputType
{ embed = \x ->
let (name, y) = embedF x
in case notEmptyRecordLit y of
Nothing -> Field (Union fields') name
Just val -> App (Field (Union fields') name) val
, declared =
Union fields'
}
where
fields' = fmap notEmptyRecord fields
{-| Specify how to encode an alternative by providing an explicit `InputType`
for that alternative
-}
inputConstructorWith
:: Text
-> InputType a
-> UnionInputType a
inputConstructorWith name inputType = UnionInputType $
Data.Functor.Product.Pair
( Control.Applicative.Const
( Dhall.Map.singleton
name
( declared inputType )
)
)
( Op ( (name,) . embed inputType )
)
{-| Specify how to encode an alternative by using the default `ToDhall` instance
for that type
-}
inputConstructor
:: ToDhall a
=> Text
-> UnionInputType a
inputConstructor name = inputConstructorWith name inject