blobsets/src/blobsets.nim

670 lines
19 KiB
Nim

import std/asyncdispatch
import std/hashes, std/streams, std/strutils, std/bitops, std/unicode, std/endians
import cbor, siphash
import ./blobsets/priv/hex
import std/streams, std/strutils
import nimcrypto, nimcrypto/blake2
const
digestLen* = 32
## Length of a chunk digest.
cidSize* = digestLen
## Size of CID object in memory
blobLeafSize* = 1 shl 14
## Size of blob leaves.
blobLeafSizeMask* = not(not(0) shl 14)
blobHexLen* = 32 * 2
blobVisualLen* = 32 * 3
maxChunkSize* {.deprecated} = blobLeafSize
type
Blake2b256* = Blake2bContext[256]
BlobId* = MDigest[Blake2b256.bits]
## Blob Identifier
SetId* = MDigest[Blake2b256.bits]
## Set Identifier
Cid* {.deprecated} = BlobId
func `$`*(bh: BlobId): string =
## Convert a blob hash to a visual representation.
const baseRune = 0x2800
result = newString(blobVisualLen)
var pos = 0
for b in bh.data.items:
let r = (Rune)baseRune or b.int
fastToUTF8Copy(r, result, pos, true)
func parseStringId[T](s: string): T =
case s.len
of blobHexLen:
hex.decode s, result.data
of blobVisualLen:
var
pos: int
r: Rune
for b in result.data.mitems:
fastRuneAt(s, pos, r, true)
b = r.byte
else:
raise newException(ValueError, "invalid blobset id encoding")
func parseCborId[T](c: CborNode): T =
## Parse a CBOR node to binary.
if c.bytes.len == result.data.len:
for i in 0..result.data.high:
result.data[i] = c.bytes[i]
func toBlobId*(s: string): BlobId =
## Parse a visual blob hash to binary.
parseStringId[BlobId] s
func toBlobId(c: CborNode): BlobId =
## Parse a CBOR blob hash to binary.
parseCborId[BlobId] c
func toSetId*(s: string): SetId =
## Parse a visual set hash to binary.
parseStringId[SetId] s
func toSetId(c: CborNode): SetId =
## Parse a CBOR set hash to binary.
parseCborId[SetId] c
proc `==`*(x, y: BlobId): bool = x.data == y.data
## Compare two BlobIds.
proc `==`*(cbor: CborNode; cid: BlobId): bool =
## Compare a CBOR node with a BlobId.
if cbor.kind == cborBytes:
for i in 0..<digestLen:
if cid.data[i] != cbor.bytes[i].uint8:
return false
result = true
proc hash*(cid: BlobId): Hash =
## Reduce a BlobId into an integer for use in tables.
var zeroKey: Key
result = cast[Hash](sipHash(cid.data, zeroKey))
proc toCbor*(cid: BlobId): CborNode = newCborBytes cid.data
## Generate a CBOR representation of a BlobId.
proc toBlobId*(cbor: CborNode): BlobId =
## Generate a CBOR representation of a BlobId.
assert(cbor.bytes.len == digestLen)
for i in 0..<digestLen:
result.data[i] = cbor.bytes[i].uint8
{.deprecated: [newCborBytes: toCbor].}
proc toHex*(id: BlobId|SetId): string = hex.encode(id.data)
## Return BlobId encoded in hexidecimal.
const
zeroChunk* = "8ddb61928ec76e4ee904cd79ed977ab6f5d9187f1102975060a6ba6ce10e5481".toDigest
## BlobId of zero chunk of maximum size.
proc take*(cid: var BlobId; buf: var string) =
## Take a raw digest from a string buffer.
doAssert(buf.len == digestLen)
copyMem(cid.data[0].addr, buf[0].addr, digestLen)
proc blobHash*(buf: pointer; len: Natural): BlobId =
## Generate a BlobId for a string of data using the BLAKE2b hash algorithm.
assert(len <= maxChunkSize)
var b: Blake2b256
init(b)
update(b, buf, len)
b.finish()
proc blobHash*(data: string): BlobId =
## Generate a BlobId for a string of data using the BLAKE2b hash algorithm.
assert(data.len <= maxChunkSize)
var b: Blake2b256
init(b)
update(b, data)
b.finish()
proc verify*(cid: BlobId; data: string): bool =
## Verify that a string of data corresponds to a BlobId.
var b: Blake2b256
init(b)
update(b, data)
finish(b) == cid
iterator simpleChunks*(s: Stream; size = maxChunkSize): string =
## Iterator that breaks a stream into simple chunks.
doAssert(size <= maxChunkSize)
var tmp = newString(size)
while not s.atEnd:
tmp.setLen(size)
tmp.setLen(s.readData(tmp[0].addr, size))
yield tmp
func isNonZero*(bh: BlobId): bool =
## Test if a blob hash is not zeroed.
var r: byte
for b in bh.data.items:
{.unroll.}
r = r or b
r != 0
{.deprecated: [isValid: isNonZero].}
type
Key* = uint64
const
keyBits = sizeof(Key) shl 3
keyChunkBits = fastLog2 keyBits
keyChunkMask = not ((not 0.Key) shl (keyChunkBits))
func toKey*(s: string): Key =
var key: siphash.Key
let b = sipHash(toOpenArrayByte(s, s.low, s.high), key)
cast[Key](b)
func toCbor(k: Key): CborNode =
## Keys are endian independent.
newCborBytes cast[array[sizeof(k), byte]](k)
const
# CBOR tags
nodeTag = 0
leafTag = 1
type
SetKind* = enum hotNode, coldNode, leafNode
BlobSet* = ref BlobSetObj
BlobSetObj = object
case kind*: SetKind
of hotNode:
bitmap: uint64
table: seq[BlobSet]
of coldNode:
setId*: SetId
of leafNode:
key: Key
blob*: BlobId
size: BiggestInt
func toCbor*(x: BlobSet): CborNode =
case x.kind
of hotNode:
let array = newCborArray()
let bitmap = newCborInt(x.bitmap)
assert(bitmap.getInt.uint64 == x.bitmap, $bitmap.getInt.uint64 & " != " & $x.bitmap)
array.add bitmap
for y in x.table:
array.add y.toCbor
newCborTag(nodeTag, array)
of coldNode:
newCborTag(nodeTag, x.setId.data.newCborBytes)
of leafNode:
let array = newCborArray()
array.add x.key
array.add x.blob.data
array.add x.size
newCborTag(leafTag, array)
func newBlobSet*(): BlobSet =
## Create a new hot blob set.
BlobSet(kind: hotNode, table: newSeqOfCap[BlobSet](2))
func newBlobSet*(id: SetId): BlobSet =
## Create a new cold blob set.
BlobSet(kind: coldNode, setId: id)
func isHot*(bs: BlobSet): bool = bs.kind == hotNode
func sparseIndex(x: Key): int = int(x and keyChunkMask)
func compactIndex(t: BlobSet; x: Key): int =
if (x and keyChunkMask) != 0:
# TODO: bug in shr and shl, cannot shift all bits out
result = (int)countSetBits(t.bitmap shl (keyBits - x.sparseIndex))
func masked(t: BlobSet; x: Key): bool =
((t.bitmap shr x.sparseIndex) and 1) != 0
func isEmpty*(s: BlobSet): bool = s.bitmap == 0'u64
## Test if a set is empty.
func nodeCount*(bs: BlobSet): int =
## Count of internal nodes in set.
result = 1
for n in bs.table:
assert(n.kind != coldNode, "cannot count cold nodes")
if n.kind == hotNode:
result.inc n.nodeCount
func leafCount*(bs: BlobSet): int =
## Count of leaves in set.
for n in bs.table:
assert(n.kind != coldNode, "cannot count leaves of cold nodes")
if n.kind == leafNode:
result.inc 1
else:
result.inc n.leafCount
func search*(trie: BlobSet; name: string): BlobId =
let key = name.toKey
var
n = trie
k = key
level = 0
while k != 0 and n.masked(k):
n = n.table[n.compactIndex(k)]
if n.kind == leafNode:
if n.key == key:
return n.blob
break
k = k shr keyChunkBits
inc level
raise newException(KeyError, "key not in blob set")
func apply(bs: BlobSet; cb: proc (leaf: BlobSet)) =
## Apply a callback to each set element.
for node in bs.table:
if node.isNil:
raiseAssert(bs.table.repr)
case node.kind
of hotNode:
apply(node, cb)
of leafNode:
cb(node)
else:
raiseAssert("cannot apply to node type " & $node.kind)
func apply*(trie: BlobSet; name: string; f: proc (id: BlobId; size: BiggestInt)) =
## Apply a procedure to a named blob, if it is present
let key = name.toKey
var
n = trie
k = key
while k != 0 and n.masked(k):
n = n.table[n.compactIndex(k)]
if n.kind == leafNode:
if n.key == key:
f(n.blob, n.size)
break
k = k shr keyChunkBits
func contains*(bs: BlobSet; name: string): bool =
var found = false
apply(bs, name) do (id: BlobId; size: BiggestInt):
found = true
result = found
func insert(trie, l: BlobSet; depth: int): BlobSet =
## This procedure is recursive to a depth of keyBits/keyChunkBits.
# TODO: not functional?
doAssert(depth < (keyBits div keyChunkBits), "key space exhausted during insert")
result = BlobSet(kind: hotNode, bitmap: trie.bitmap, table: trie.table)
let key = l.key shr (depth * keyChunkBits)
if result.masked(key):
let
depth = depth + 1
i = result.compactIndex(key)
case result.table[i].kind
of hotNode:
result.table[i] = insert(result.table[i], l, depth)
of coldNode:
raiseAssert("cannot insert into cold node")
of leafNode:
if result.table[i].key == l.key:
result.table[i] = l
else:
var subtrie = newBlobSet()
subtrie = subtrie.insert(result.table[i], depth)
subtrie = subtrie.insert(l, depth)
result.table[i] = subtrie
else:
result.bitmap = result.bitmap or (1'u64 shl key.sparseIndex)
result.table.insert(l, result.compactIndex(key))
func insert*(trie, node: BlobSet): BlobSet = insert(trie, node, 0)
## Insert set node `node` into `trie`.
func insert*(t: BlobSet; name: string; blob: BlobId; size: BiggestInt): BlobSet =
## Insert a blob hash into a trie.
# TODO: this is not functional!
let leaf = BlobSet(kind: leafNode, key: name.toKey, blob: blob, size: size)
insert(t, leaf)
func remove(trie: BlobSet; key: Key; depth: int): BlobSet =
result = trie
let key = key shr (depth * keyChunkBits)
if trie.masked(key):
let
depth = depth + 1
i = trie.compactIndex(key)
case trie.table[i].kind
of hotNode:
let newTrie = remove(trie.table[i], key, depth)
if newTrie != trie.table[i]:
if newTrie.isNil:
if trie.table.len == 1:
result = nil
else:
result = newBlobSet()
for j in trie.table.low..trie.table.high:
if j == i: continue
result = insert(result, newTrie, depth)
of coldNode:
raiseAssert("cannot remove from cold node")
of leafNode:
if trie.table.len == 1:
result = nil
func remove*(trie: BlobSet; name: string): BlobSet =
## Remove a blob from a trie.
if trie.isEmpty:
result = trie
else:
let key = name.toKey
result = remove(trie, key, 0)
if result.isNil:
result = newBlobSet()
func leafCount*(size: Natural): int = (size+blobLeafSize-1) div blobLeafSize
func compressTree*(leaves: var seq[BlobId]) =
var
ctx: Blake2b256
nodeOffset = 0
nodeDepth = 0
while leaves.len > 1:
nodeOffset = 0
inc nodeDepth
var pos, next: int
while pos < leaves.len:
ctx.init do (params: var Blake2bParams):
params.fanout = 2
params.depth = 255
params.leafLength = blobLeafSize
params.nodeOffset = nodeOffset
params.nodeDepth = nodeDepth
inc nodeOffset
ctx.update(leaves[pos].data)
inc pos
if pos < leaves.len:
ctx.update(leaves[pos].data)
inc pos
leaves[next] = ctx.finish()
inc next
leaves.setLen(next)
# TODO: BLAKE2 tree finalization flags
type
BlobKind* = enum
dataBlob, metaBlob
proc `$`*(k: BlobKind): string =
case k
of dataBlob: "data"
of metaBlob: "meta"
type
BlobStream* = ref BlobStreamObj
BlobStreamObj* = object of RootObj
closeImpl*: proc (s: BlobStream) {.nimcall, gcsafe.}
sizeImpl*: proc (s: BlobStream): BiggestInt {.nimcall, gcsafe.}
setPosImpl*: proc (s: BlobStream; pos: BiggestInt) {.nimcall, gcsafe.}
getPosImpl*: proc (s: BlobStream): BiggestInt {.nimcall, gcsafe.}
readImpl*: proc (s: BlobStream; buffer: pointer; bufLen: int): Future[int] {.nimcall, gcsafe.}
IngestStream* = ref IngestStreamObj
IngestStreamObj* = object of RootObj
cancelImpl*: proc (s: IngestStream) {.nimcall, gcsafe.}
finishImpl*: proc (s: IngestStream): Future[tuple[id: BlobId, size: BiggestInt]] {.nimcall, gcsafe.}
ingestImpl*: proc (s: IngestStream; buf: pointer; size: int): Future[void] {.nimcall, gcsafe.}
proc close*(s: BlobStream) =
assert(not s.closeImpl.isNil)
s.closeImpl(s)
proc size*(s: BlobStream): BiggestInt =
assert(not s.sizeImpl.isNil)
s.sizeImpl(s)
proc `pos=`*(s: BlobStream; pos: BiggestInt) =
assert(not s.setPosImpl.isNil)
s.setPosImpl(s, pos)
proc pos*(s: BlobStream): BiggestInt =
assert(not s.getPosImpl.isNil)
s.getPosImpl(s)
proc read*(s: BlobStream; buf: pointer; len: Natural): Future[int] =
assert(not s.readImpl.isNil)
s.readImpl(s, buf, len)
proc cancle*(s: IngestStream): tuple[id: BlobId, size: BiggestInt] =
## Cancel and close ingest stream
assert(not s.cancelImpl.isNil)
s.cancelImpl(s)
proc finish*(s: IngestStream): Future[tuple[id: BlobId, size: BiggestInt]] =
## Finish ingest stream
assert(not s.finishImpl.isNil)
s.finishImpl(s)
proc ingest*(s: IngestStream; buf: pointer; size: Natural): Future[void] =
## Ingest stream
assert(not s.ingestImpl.isNil)
s.ingestImpl(s, buf, size)
proc ingest*(s: IngestStream; buf: string): Future[void] =
## Ingest stream
assert(not s.ingestImpl.isNil)
s.ingestImpl(s, buf[0].unsafeAddr, buf.len)
type
BlobStore* = ref BlobStoreObj
BlobStoreObj* = object of RootObj
closeImpl*: proc (s: BlobStore) {.nimcall, gcsafe.}
openBlobStreamImpl*: proc (s: BlobStore; id: BlobId; size: BiggestInt; kind: BlobKind): BlobStream {.nimcall, gcsafe.}
openIngestStreamImpl*: proc (s: BlobStore; size: BiggestInt; kind: BlobKind): IngestStream {.nimcall, gcsafe.}
#
# Null Store implementation
#
type
NullIngestStream = ref NullIngestStreamObj
NullIngestStreamObj = object of IngestStreamObj
ctx: Blake2b256
leaves: seq[BlobId]
pos, nodeOffset: BiggestInt
proc nullBlobClose(s: BlobStream) = discard
proc setPosNull(s: BlobStream; pos: BiggestInt) = discard
proc getPosNull(s: BlobStream): BiggestInt = discard
proc nullBlobRead(s: BlobStream; buffer: pointer; len: Natural): Future[int] =
result = newFuture[int]()
complete result, 0
proc nullOpenBlobStream(s: BlobStore; id: BlobId; size: BiggestInt; kind: BlobKind): BlobStream =
BlobStream(
closeImpl: nullBlobClose,
setPosImpl: setPosNull,
getPosImpl: getPosNull,
readImpl: nullBlobRead)
proc nullFinish(s: IngestStream): Future[tuple[id: BlobId, size: BiggestInt]] =
var s = NullIngestStream(s)
s.leaves.add finish(s.ctx)
compressTree(s.leaves)
var pair: tuple[id: BlobId, size: BiggestInt]
pair.id = s.leaves[0]
pair.size = s.pos
result = newFuture[tuple[id: BlobId, size: BiggestInt]]()
complete result, pair
proc nullIngest(s: IngestStream; buf: pointer; len: Natural): Future[void] =
var
s = NullIngestStream(s)
off = 0
buf = cast[ptr array[blobLeafSize, byte]](buf)
while off < len:
var n = min(blobLeafSize, len-off)
let leafOff = int(s.pos and blobLeafSizeMask)
if leafOff == 0:
if s.pos > 0:
s.leaves.add finish(s.ctx)
s.ctx.init do (params: var Blake2bParams):
params.fanout = 2
params.depth = 255
params.leafLength = blobLeafSize
params.nodeOffset = s.nodeOffset
inc s.nodeOffset
else:
n = min(n, blobLeafSize-leafOff)
s.ctx.update(buf[off].addr, n)
off.inc n
s.pos.inc n
result = newFuture[void]()
complete result
proc nullOpenIngestStream(s: BlobStore; size: BiggestInt; kind: BlobKind): IngestStream =
NullIngestStream(
finishImpl: nullFinish, ingestImpl: nullIngest, leaves: newSeq[BlobId]())
proc newNullStore*(): BlobStore =
BlobStore(
openBlobStreamImpl: nullOpenBlobStream,
openIngestStreamImpl: nullOpenIngestStream)
proc close*(s: BlobStore) =
## Close active store resources.
if not s.closeImpl.isNil: s.closeImpl(s)
proc openBlobStream*(s: BlobStore; id: BlobId; size = 0.BiggestInt; kind = dataBlob): BlobStream =
## Return a new `BlobStream` for reading a blob.
assert(not s.openBlobStreamImpl.isNil)
s.openBlobStreamImpl(s, id, size, kind)
proc openIngestStream*(s: BlobStore; size = 0.BiggestInt; kind = dataBlob): IngestStream =
## Return a new `IngestStream` for ingesting a blob.
assert(not s.openIngestStreamImpl.isNil)
s.openIngestStreamImpl(s, size, kind)
iterator dumpBlob*(store: BlobStore; id: BlobId): string =
var
stream = store.openBlobStream(id, kind=dataBlob)
buf = newString(blobLeafSize)
defer:
close stream
while true:
buf.setLen(blobLeafSize)
let n = waitFor stream.read(buf[0].addr, buf.len)
if n == 0:
break
buf.setLen(n)
yield buf
proc loadSet(store: BlobStore; id: SetId; depth: int): Future[BlobSet] {.async.} =
if (not Key(0)) shr depth == 0:
raiseAssert("loadSet trie is too deep")
var
stream = store.openBlobStream(id, kind=metaBlob)
buf = newString(blobLeafSize)
defer:
close stream
let n = await stream.read(buf[0].addr, buf.len)
assert(n != 0, "read zero of set " & $id)
buf.setLen(n)
let
tagPair = parseCbor buf
c = tagPair.val
bitmap = c.seq[0].getInt.uint64
if bitmap.countSetBits != c.seq.len-1:
let bits = bitmap.countSetBits
raise newException(ValueError, "invalid set CBOR, bitmap has " & $bits & " bits and sequence len is " & $c.seq.len)
result = BlobSet(
kind: hotNode,
bitmap: bitmap,
table: newSeqOfCap[BlobSet](c.seq.len-1))
for i in 1..c.seq.high:
let node = c[i].val
case c[i].tag.int
of nodeTag:
let child = await loadSet(store, node.toSetId, depth+1)
result.table.add child
of leafTag:
let
leaf = BlobSet(
kind: leafNode,
key: getNum[Key] node[0],
blob: parseCborId[BlobId] node[1],
size: getInt node[2])
result.table.add leaf
else:
raise newException(ValueError, "invalid set CBOR")
proc load*(store: BlobStore; id: SetId): BlobSet =
waitFor loadSet(store, id, 0)
proc commit*(store: BlobStore; bs: BlobSet): BlobSet =
if bs.kind == coldNode: return bs
let tmp = BlobSet(kind: hotNode, bitmap: bs.bitmap, table: bs.table)
for e in tmp.table.mitems:
if e.isHot: e = store.commit e
let stream = store.openIngestStream(kind=metaBlob)
var buf = encode tmp.toCbor
waitFor stream.ingest(buf)
let (id, _) = waitFor finish(stream)
result = BlobSet(kind: coldNode, setId: id)
proc apply*(store: BlobStore; bs: BlobSet; name: string; f: proc (id: BlobId; size: BiggestInt)) =
# TODO: lazy-load set
doAssert(bs.kind == hotNode)
apply(bs, name, f)
proc insert*(store: BlobStore; bs: BlobSet; name: string; blob: BlobId; size: BiggestInt): BlobSet =
# TODO: lazy-load set
insert(bs, name, blob, size)
proc remove*(store: BlobStore; bs: BlobSet; name: string): BlobSet =
# TODO: lazy-load set
remove(bs, name)
proc union*(store: BlobStore; sets: varargs[BlobSet]): BlobSet =
## Return the union of `sets`.
# TODO: lazy-load set
var fresh = newBlobSet()
proc freshInsert(leaf: BlobSet) =
fresh = insert(fresh, leaf)
for bs in sets:
assert(not bs.isnil)
bs.apply(freshInsert)
result = fresh
import random
proc randomApply*(store: BlobStore; trie: BlobSet; seed: int64;
f: proc(id: BlobId; size: BiggestInt)) =
## Apply to random leaf if the set is not empty.
var
rng = initRand(seed)
retry = 0
trie = trie
i = rng.rand(max(1, countSetBits(trie.bitmap))-1)
while trie.bitmap != 0:
let next = trie.table[i]
case next.kind
of leafNode:
f(next.blob, next.size)
break
of coldNode:
trie.table[i] = store.load(next.setId)
of hotNode:
trie = next
i = rng.rand(countSetBits(trie.bitmap)-1)