This is dash.info, produced by makeinfo version 6.5 from dash.texi. This manual is for ‘dash.el’ version 2.12.1. Copyright © 2012-2015 Magnar Sveen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . INFO-DIR-SECTION Emacs START-INFO-DIR-ENTRY * Dash: (dash.info). A modern list library for GNU Emacs END-INFO-DIR-ENTRY  File: dash.info, Node: Top, Next: Installation, Up: (dir) dash **** This manual is for ‘dash.el’ version 2.12.1. Copyright © 2012-2015 Magnar Sveen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . * Menu: * Installation:: * Functions:: * Development:: * Index:: — The Detailed Node Listing — Installation * Using in a package:: * Fontification of special variables:: Functions * Maps:: * Sublist selection:: * List to list:: * Reductions:: * Unfolding:: * Predicates:: * Partitioning:: * Indexing:: * Set operations:: * Other list operations:: * Tree operations:: * Threading macros:: * Binding:: * Side-effects:: * Destructive operations:: * Function combinators:: Development * Contribute:: How to contribute * Changes:: List of significant changes by version * Contributors:: List of contributors  File: dash.info, Node: Installation, Next: Functions, Prev: Top, Up: Top 1 Installation ************** It’s available on GNU ELPA (https://elpa.gnu.org/) and MELPA (https://melpa.org/); use ‘M-x package-install’: ‘M-x package-install dash’ Install the dash library. ‘M-x package-install dash-functional’ Optional, if you want the function combinators. Alternatively, you can just dump dash.el or dash-functional.el in your load path somewhere. * Menu: * Using in a package:: * Fontification of special variables::  File: dash.info, Node: Using in a package, Next: Fontification of special variables, Up: Installation 1.1 Using in a package ====================== Add this to the big comment block at the top: ;; Package-Requires: ((dash "2.12.1")) To get function combinators: ;; Package-Requires: ((dash "2.12.1") (dash-functional "1.2.0") (emacs "24"))  File: dash.info, Node: Fontification of special variables, Prev: Using in a package, Up: Installation 1.2 Fontification of special variables ====================================== Font lock of special Dash variables (‘it’, ‘acc’, etc.) in Emacs Lisp buffers can optionally be enabled with the autoloaded minor mode ‘dash-fontify-mode’. In older Emacs versions which do not dynamically detect macros, the minor mode also fontifies Dash macro calls. To automatically enable the minor mode in all Emacs Lisp buffers, just call its autoloaded global counterpart ‘global-dash-fontify-mode’, either interactively or from your ‘user-init-file’: (global-dash-fontify-mode)  File: dash.info, Node: Functions, Next: Development, Prev: Installation, Up: Top 2 Functions *********** This chapter contains reference documentation for the dash application programming interface (API). All functions and constructs in the library are prefixed with a dash (-). There are also anaphoric versions of functions where that makes sense, prefixed with two dashes instead of one. For instance, while ‘-map’ takes a function to map over the list, one can also use the anaphoric form with double dashes - which will then be executed with ‘it’ exposed as the list item. Here’s an example: (-map (lambda (n) (* n n)) '(1 2 3 4)) ;; normal version (--map (* it it) '(1 2 3 4)) ;; anaphoric version Of course, the original can also be written like (defun square (n) (* n n)) (-map 'square '(1 2 3 4)) which demonstrates the usefulness of both versions. * Menu: * Maps:: * Sublist selection:: * List to list:: * Reductions:: * Unfolding:: * Predicates:: * Partitioning:: * Indexing:: * Set operations:: * Other list operations:: * Tree operations:: * Threading macros:: * Binding:: * Side-effects:: * Destructive operations:: * Function combinators::  File: dash.info, Node: Maps, Next: Sublist selection, Up: Functions 2.1 Maps ======== Functions in this category take a transforming function, which is then applied sequentially to each or selected elements of the input list. The results are collected in order and returned as new list. -- Function: -map (fn list) Return a new list consisting of the result of applying FN to the items in LIST. (-map (lambda (num) (* num num)) '(1 2 3 4)) ⇒ '(1 4 9 16) (-map 'square '(1 2 3 4)) ⇒ '(1 4 9 16) (--map (* it it) '(1 2 3 4)) ⇒ '(1 4 9 16) -- Function: -map-when (pred rep list) Return a new list where the elements in LIST that do not match the PRED function are unchanged, and where the elements in LIST that do match the PRED function are mapped through the REP function. Alias: ‘-replace-where’ See also: ‘-update-at’ (*note -update-at::) (-map-when 'even? 'square '(1 2 3 4)) ⇒ '(1 4 3 16) (--map-when (> it 2) (* it it) '(1 2 3 4)) ⇒ '(1 2 9 16) (--map-when (= it 2) 17 '(1 2 3 4)) ⇒ '(1 17 3 4) -- Function: -map-first (pred rep list) Replace first item in LIST satisfying PRED with result of REP called on this item. See also: ‘-map-when’ (*note -map-when::), ‘-replace-first’ (*note -replace-first::) (-map-first 'even? 'square '(1 2 3 4)) ⇒ '(1 4 3 4) (--map-first (> it 2) (* it it) '(1 2 3 4)) ⇒ '(1 2 9 4) (--map-first (= it 2) 17 '(1 2 3 2)) ⇒ '(1 17 3 2) -- Function: -map-last (pred rep list) Replace last item in LIST satisfying PRED with result of REP called on this item. See also: ‘-map-when’ (*note -map-when::), ‘-replace-last’ (*note -replace-last::) (-map-last 'even? 'square '(1 2 3 4)) ⇒ '(1 2 3 16) (--map-last (> it 2) (* it it) '(1 2 3 4)) ⇒ '(1 2 3 16) (--map-last (= it 2) 17 '(1 2 3 2)) ⇒ '(1 2 3 17) -- Function: -map-indexed (fn list) Return a new list consisting of the result of (FN index item) for each item in LIST. In the anaphoric form ‘--map-indexed’, the index is exposed as symbol ‘it-index’. See also: ‘-each-indexed’ (*note -each-indexed::). (-map-indexed (lambda (index item) (- item index)) '(1 2 3 4)) ⇒ '(1 1 1 1) (--map-indexed (- it it-index) '(1 2 3 4)) ⇒ '(1 1 1 1) -- Function: -annotate (fn list) Return a list of cons cells where each cell is FN applied to each element of LIST paired with the unmodified element of LIST. (-annotate '1+ '(1 2 3)) ⇒ '((2 . 1) (3 . 2) (4 . 3)) (-annotate 'length '(("h" "e" "l" "l" "o") ("hello" "world"))) ⇒ '((5 "h" "e" "l" "l" "o") (2 "hello" "world")) (--annotate (< 1 it) '(0 1 2 3)) ⇒ '((nil . 0) (nil . 1) (t . 2) (t . 3)) -- Function: -splice (pred fun list) Splice lists generated by FUN in place of elements matching PRED in LIST. FUN takes the element matching PRED as input. This function can be used as replacement for ‘,@’ in case you need to splice several lists at marked positions (for example with keywords). See also: ‘-splice-list’ (*note -splice-list::), ‘-insert-at’ (*note -insert-at::) (-splice 'even? (lambda (x) (list x x)) '(1 2 3 4)) ⇒ '(1 2 2 3 4 4) (--splice 't (list it it) '(1 2 3 4)) ⇒ '(1 1 2 2 3 3 4 4) (--splice (equal it :magic) '((list of) (magical) (code)) '((foo) (bar) :magic (baz))) ⇒ '((foo) (bar) (list of) (magical) (code) (baz)) -- Function: -splice-list (pred new-list list) Splice NEW-LIST in place of elements matching PRED in LIST. See also: ‘-splice’ (*note -splice::), ‘-insert-at’ (*note -insert-at::) (-splice-list 'keywordp '(a b c) '(1 :foo 2)) ⇒ '(1 a b c 2) (-splice-list 'keywordp nil '(1 :foo 2)) ⇒ '(1 2) (--splice-list (keywordp it) '(a b c) '(1 :foo 2)) ⇒ '(1 a b c 2) -- Function: -mapcat (fn list) Return the concatenation of the result of mapping FN over LIST. Thus function FN should return a list. (-mapcat 'list '(1 2 3)) ⇒ '(1 2 3) (-mapcat (lambda (item) (list 0 item)) '(1 2 3)) ⇒ '(0 1 0 2 0 3) (--mapcat (list 0 it) '(1 2 3)) ⇒ '(0 1 0 2 0 3) -- Function: -copy (arg) Create a shallow copy of LIST. (fn LIST) (-copy '(1 2 3)) ⇒ '(1 2 3) (let ((a '(1 2 3))) (eq a (-copy a))) ⇒ nil  File: dash.info, Node: Sublist selection, Next: List to list, Prev: Maps, Up: Functions 2.2 Sublist selection ===================== Functions returning a sublist of the original list. -- Function: -filter (pred list) Return a new list of the items in LIST for which PRED returns a non-nil value. Alias: ‘-select’ See also: ‘-keep’ (*note -keep::), ‘-remove’ (*note -remove::). (-filter (lambda (num) (= 0 (% num 2))) '(1 2 3 4)) ⇒ '(2 4) (-filter 'even? '(1 2 3 4)) ⇒ '(2 4) (--filter (= 0 (% it 2)) '(1 2 3 4)) ⇒ '(2 4) -- Function: -remove (pred list) Return a new list of the items in LIST for which PRED returns nil. Alias: ‘-reject’ See also: ‘-filter’ (*note -filter::). (-remove (lambda (num) (= 0 (% num 2))) '(1 2 3 4)) ⇒ '(1 3) (-remove 'even? '(1 2 3 4)) ⇒ '(1 3) (--remove (= 0 (% it 2)) '(1 2 3 4)) ⇒ '(1 3) -- Function: -remove-first (pred list) Return a new list with the first item matching PRED removed. Alias: ‘-reject-first’ See also: ‘-remove’ (*note -remove::), ‘-map-first’ (*note -map-first::) (-remove-first 'even? '(1 3 5 4 7 8 10)) ⇒ '(1 3 5 7 8 10) (-remove-first 'stringp '(1 2 "first" "second" "third")) ⇒ '(1 2 "second" "third") (--remove-first (> it 3) '(1 2 3 4 5 6 7 8 9 10)) ⇒ '(1 2 3 5 6 7 8 9 10) -- Function: -remove-last (pred list) Return a new list with the last item matching PRED removed. Alias: ‘-reject-last’ See also: ‘-remove’ (*note -remove::), ‘-map-last’ (*note -map-last::) (-remove-last 'even? '(1 3 5 4 7 8 10 11)) ⇒ '(1 3 5 4 7 8 11) (-remove-last 'stringp '(1 2 "last" "second" "third")) ⇒ '(1 2 "last" "second") (--remove-last (> it 3) '(1 2 3 4 5 6 7 8 9 10)) ⇒ '(1 2 3 4 5 6 7 8 9) -- Function: -remove-item (item list) Remove all occurrences of ITEM from LIST. Comparison is done with ‘equal’. (-remove-item 3 '(1 2 3 2 3 4 5 3)) ⇒ '(1 2 2 4 5) (-remove-item 'foo '(foo bar baz foo)) ⇒ '(bar baz) (-remove-item "bob" '("alice" "bob" "eve" "bob" "dave")) ⇒ '("alice" "eve" "dave") -- Function: -non-nil (list) Return all non-nil elements of LIST. (-non-nil '(1 nil 2 nil nil 3 4 nil 5 nil)) ⇒ '(1 2 3 4 5) -- Function: -slice (list from &optional to step) Return copy of LIST, starting from index FROM to index TO. FROM or TO may be negative. These values are then interpreted modulo the length of the list. If STEP is a number, only each STEPth item in the resulting section is returned. Defaults to 1. (-slice '(1 2 3 4 5) 1) ⇒ '(2 3 4 5) (-slice '(1 2 3 4 5) 0 3) ⇒ '(1 2 3) (-slice '(1 2 3 4 5 6 7 8 9) 1 -1 2) ⇒ '(2 4 6 8) -- Function: -take (n list) Return a new list of the first N items in LIST, or all items if there are fewer than N. See also: ‘-take-last’ (*note -take-last::) (-take 3 '(1 2 3 4 5)) ⇒ '(1 2 3) (-take 17 '(1 2 3 4 5)) ⇒ '(1 2 3 4 5) -- Function: -take-last (n list) Return the last N items of LIST in order. See also: ‘-take’ (*note -take::) (-take-last 3 '(1 2 3 4 5)) ⇒ '(3 4 5) (-take-last 17 '(1 2 3 4 5)) ⇒ '(1 2 3 4 5) (-take-last 1 '(1 2 3 4 5)) ⇒ '(5) -- Function: -drop (n list) Return the tail of LIST without the first N items. See also: ‘-drop-last’ (*note -drop-last::) (fn N LIST) (-drop 3 '(1 2 3 4 5)) ⇒ '(4 5) (-drop 17 '(1 2 3 4 5)) ⇒ '() -- Function: -drop-last (n list) Remove the last N items of LIST and return a copy. See also: ‘-drop’ (*note -drop::) (-drop-last 3 '(1 2 3 4 5)) ⇒ '(1 2) (-drop-last 17 '(1 2 3 4 5)) ⇒ '() -- Function: -take-while (pred list) Return a new list of successive items from LIST while (PRED item) returns a non-nil value. (-take-while 'even? '(1 2 3 4)) ⇒ '() (-take-while 'even? '(2 4 5 6)) ⇒ '(2 4) (--take-while (< it 4) '(1 2 3 4 3 2 1)) ⇒ '(1 2 3) -- Function: -drop-while (pred list) Return the tail of LIST starting from the first item for which (PRED item) returns nil. (-drop-while 'even? '(1 2 3 4)) ⇒ '(1 2 3 4) (-drop-while 'even? '(2 4 5 6)) ⇒ '(5 6) (--drop-while (< it 4) '(1 2 3 4 3 2 1)) ⇒ '(4 3 2 1) -- Function: -select-by-indices (indices list) Return a list whose elements are elements from LIST selected as ‘(nth i list)‘ for all i from INDICES. (-select-by-indices '(4 10 2 3 6) '("v" "e" "l" "o" "c" "i" "r" "a" "p" "t" "o" "r")) ⇒ '("c" "o" "l" "o" "r") (-select-by-indices '(2 1 0) '("a" "b" "c")) ⇒ '("c" "b" "a") (-select-by-indices '(0 1 2 0 1 3 3 1) '("f" "a" "r" "l")) ⇒ '("f" "a" "r" "f" "a" "l" "l" "a") -- Function: -select-columns (columns table) Select COLUMNS from TABLE. TABLE is a list of lists where each element represents one row. It is assumed each row has the same length. Each row is transformed such that only the specified COLUMNS are selected. See also: ‘-select-column’ (*note -select-column::), ‘-select-by-indices’ (*note -select-by-indices::) (-select-columns '(0 2) '((1 2 3) (a b c) (:a :b :c))) ⇒ '((1 3) (a c) (:a :c)) (-select-columns '(1) '((1 2 3) (a b c) (:a :b :c))) ⇒ '((2) (b) (:b)) (-select-columns nil '((1 2 3) (a b c) (:a :b :c))) ⇒ '(nil nil nil) -- Function: -select-column (column table) Select COLUMN from TABLE. TABLE is a list of lists where each element represents one row. It is assumed each row has the same length. The single selected column is returned as a list. See also: ‘-select-columns’ (*note -select-columns::), ‘-select-by-indices’ (*note -select-by-indices::) (-select-column 1 '((1 2 3) (a b c) (:a :b :c))) ⇒ '(2 b :b)  File: dash.info, Node: List to list, Next: Reductions, Prev: Sublist selection, Up: Functions 2.3 List to list ================ Functions returning a modified copy of the input list. -- Function: -keep (fn list) Return a new list of the non-nil results of applying FN to the items in LIST. If you want to select the original items satisfying a predicate use ‘-filter’ (*note -filter::). (-keep 'cdr '((1 2 3) (4 5) (6))) ⇒ '((2 3) (5)) (-keep (lambda (num) (when (> num 3) (* 10 num))) '(1 2 3 4 5 6)) ⇒ '(40 50 60) (--keep (when (> it 3) (* 10 it)) '(1 2 3 4 5 6)) ⇒ '(40 50 60) -- Function: -concat (&rest lists) Return a new list with the concatenation of the elements in the supplied LISTS. (-concat '(1)) ⇒ '(1) (-concat '(1) '(2)) ⇒ '(1 2) (-concat '(1) '(2 3) '(4)) ⇒ '(1 2 3 4) -- Function: -flatten (l) Take a nested list L and return its contents as a single, flat list. Note that because ‘nil’ represents a list of zero elements (an empty list), any mention of nil in L will disappear after flattening. If you need to preserve nils, consider ‘-flatten-n’ (*note -flatten-n::) or map them to some unique symbol and then map them back. Conses of two atoms are considered "terminals", that is, they aren’t flattened further. See also: ‘-flatten-n’ (*note -flatten-n::) (-flatten '((1))) ⇒ '(1) (-flatten '((1 (2 3) (((4 (5))))))) ⇒ '(1 2 3 4 5) (-flatten '(1 2 (3 . 4))) ⇒ '(1 2 (3 . 4)) -- Function: -flatten-n (num list) Flatten NUM levels of a nested LIST. See also: ‘-flatten’ (*note -flatten::) (-flatten-n 1 '((1 2) ((3 4) ((5 6))))) ⇒ '(1 2 (3 4) ((5 6))) (-flatten-n 2 '((1 2) ((3 4) ((5 6))))) ⇒ '(1 2 3 4 (5 6)) (-flatten-n 3 '((1 2) ((3 4) ((5 6))))) ⇒ '(1 2 3 4 5 6) -- Function: -replace (old new list) Replace all OLD items in LIST with NEW. Elements are compared using ‘equal’. See also: ‘-replace-at’ (*note -replace-at::) (-replace 1 "1" '(1 2 3 4 3 2 1)) ⇒ '("1" 2 3 4 3 2 "1") (-replace "foo" "bar" '("a" "nice" "foo" "sentence" "about" "foo")) ⇒ '("a" "nice" "bar" "sentence" "about" "bar") (-replace 1 2 nil) ⇒ nil -- Function: -replace-first (old new list) Replace the first occurrence of OLD with NEW in LIST. Elements are compared using ‘equal’. See also: ‘-map-first’ (*note -map-first::) (-replace-first 1 "1" '(1 2 3 4 3 2 1)) ⇒ '("1" 2 3 4 3 2 1) (-replace-first "foo" "bar" '("a" "nice" "foo" "sentence" "about" "foo")) ⇒ '("a" "nice" "bar" "sentence" "about" "foo") (-replace-first 1 2 nil) ⇒ nil -- Function: -replace-last (old new list) Replace the last occurrence of OLD with NEW in LIST. Elements are compared using ‘equal’. See also: ‘-map-last’ (*note -map-last::) (-replace-last 1 "1" '(1 2 3 4 3 2 1)) ⇒ '(1 2 3 4 3 2 "1") (-replace-last "foo" "bar" '("a" "nice" "foo" "sentence" "about" "foo")) ⇒ '("a" "nice" "foo" "sentence" "about" "bar") (-replace-last 1 2 nil) ⇒ nil -- Function: -insert-at (n x list) Return a list with X inserted into LIST at position N. See also: ‘-splice’ (*note -splice::), ‘-splice-list’ (*note -splice-list::) (-insert-at 1 'x '(a b c)) ⇒ '(a x b c) (-insert-at 12 'x '(a b c)) ⇒ '(a b c x) -- Function: -replace-at (n x list) Return a list with element at Nth position in LIST replaced with X. See also: ‘-replace’ (*note -replace::) (-replace-at 0 9 '(0 1 2 3 4 5)) ⇒ '(9 1 2 3 4 5) (-replace-at 1 9 '(0 1 2 3 4 5)) ⇒ '(0 9 2 3 4 5) (-replace-at 4 9 '(0 1 2 3 4 5)) ⇒ '(0 1 2 3 9 5) -- Function: -update-at (n func list) Return a list with element at Nth position in LIST replaced with ‘(func (nth n list))‘. See also: ‘-map-when’ (*note -map-when::) (-update-at 0 (lambda (x) (+ x 9)) '(0 1 2 3 4 5)) ⇒ '(9 1 2 3 4 5) (-update-at 1 (lambda (x) (+ x 8)) '(0 1 2 3 4 5)) ⇒ '(0 9 2 3 4 5) (--update-at 2 (length it) '("foo" "bar" "baz" "quux")) ⇒ '("foo" "bar" 3 "quux") -- Function: -remove-at (n list) Return a list with element at Nth position in LIST removed. See also: ‘-remove-at-indices’ (*note -remove-at-indices::), ‘-remove’ (*note -remove::) (-remove-at 0 '("0" "1" "2" "3" "4" "5")) ⇒ '("1" "2" "3" "4" "5") (-remove-at 1 '("0" "1" "2" "3" "4" "5")) ⇒ '("0" "2" "3" "4" "5") (-remove-at 2 '("0" "1" "2" "3" "4" "5")) ⇒ '("0" "1" "3" "4" "5") -- Function: -remove-at-indices (indices list) Return a list whose elements are elements from LIST without elements selected as ‘(nth i list)‘ for all i from INDICES. See also: ‘-remove-at’ (*note -remove-at::), ‘-remove’ (*note -remove::) (-remove-at-indices '(0) '("0" "1" "2" "3" "4" "5")) ⇒ '("1" "2" "3" "4" "5") (-remove-at-indices '(0 2 4) '("0" "1" "2" "3" "4" "5")) ⇒ '("1" "3" "5") (-remove-at-indices '(0 5) '("0" "1" "2" "3" "4" "5")) ⇒ '("1" "2" "3" "4")  File: dash.info, Node: Reductions, Next: Unfolding, Prev: List to list, Up: Functions 2.4 Reductions ============== Functions reducing lists into single value. -- Function: -reduce-from (fn initial-value list) Return the result of applying FN to INITIAL-VALUE and the first item in LIST, then applying FN to that result and the 2nd item, etc. If LIST contains no items, return INITIAL-VALUE and do not call FN. In the anaphoric form ‘--reduce-from’, the accumulated value is exposed as symbol ‘acc’. See also: ‘-reduce’ (*note -reduce::), ‘-reduce-r’ (*note -reduce-r::) (-reduce-from '- 10 '(1 2 3)) ⇒ 4 (-reduce-from (lambda (memo item) (format "(%s - %d)" memo item)) "10" '(1 2 3)) ⇒ "(((10 - 1) - 2) - 3)" (--reduce-from (concat acc " " it) "START" '("a" "b" "c")) ⇒ "START a b c" -- Function: -reduce-r-from (fn initial-value list) Replace conses with FN, nil with INITIAL-VALUE and evaluate the resulting expression. If LIST is empty, INITIAL-VALUE is returned and FN is not called. Note: this function works the same as ‘-reduce-from’ (*note -reduce-from::) but the operation associates from right instead of from left. See also: ‘-reduce-r’ (*note -reduce-r::), ‘-reduce’ (*note -reduce::) (-reduce-r-from '- 10 '(1 2 3)) ⇒ -8 (-reduce-r-from (lambda (item memo) (format "(%d - %s)" item memo)) "10" '(1 2 3)) ⇒ "(1 - (2 - (3 - 10)))" (--reduce-r-from (concat it " " acc) "END" '("a" "b" "c")) ⇒ "a b c END" -- Function: -reduce (fn list) Return the result of applying FN to the first 2 items in LIST, then applying FN to that result and the 3rd item, etc. If LIST contains no items, return the result of calling FN with no arguments. If LIST contains a single item, return that item and do not call FN. In the anaphoric form ‘--reduce’, the accumulated value is exposed as symbol ‘acc’. See also: ‘-reduce-from’ (*note -reduce-from::), ‘-reduce-r’ (*note -reduce-r::) (-reduce '- '(1 2 3 4)) ⇒ -8 (-reduce 'list '(1 2 3 4)) ⇒ '(((1 2) 3) 4) (--reduce (format "%s-%d" acc it) '(1 2 3)) ⇒ "1-2-3" -- Function: -reduce-r (fn list) Replace conses with FN and evaluate the resulting expression. The final nil is ignored. If LIST contains no items, return the result of calling FN with no arguments. If LIST contains a single item, return that item and do not call FN. The first argument of FN is the new item, the second is the accumulated value. Note: this function works the same as ‘-reduce’ (*note -reduce::) but the operation associates from right instead of from left. See also: ‘-reduce-r-from’ (*note -reduce-r-from::), ‘-reduce’ (*note -reduce::) (-reduce-r '- '(1 2 3 4)) ⇒ -2 (-reduce-r (lambda (item memo) (format "%s-%d" memo item)) '(1 2 3)) ⇒ "3-2-1" (--reduce-r (format "%s-%d" acc it) '(1 2 3)) ⇒ "3-2-1" -- Function: -reductions-from (fn init list) Return a list of the intermediate values of the reduction. See ‘-reduce-from’ (*note -reduce-from::) for explanation of the arguments. See also: ‘-reductions’ (*note -reductions::), ‘-reductions-r’ (*note -reductions-r::), ‘-reduce-r’ (*note -reduce-r::) (-reductions-from (lambda (a i) (format "(%s FN %d)" a i)) "INIT" '(1 2 3 4)) ⇒ '("INIT" "(INIT FN 1)" "((INIT FN 1) FN 2)" "(((INIT FN 1) FN 2) FN 3)" "((((INIT FN 1) FN 2) FN 3) FN 4)") (-reductions-from 'max 0 '(2 1 4 3)) ⇒ '(0 2 2 4 4) (-reductions-from '* 1 '(1 2 3 4)) ⇒ '(1 1 2 6 24) -- Function: -reductions-r-from (fn init list) Return a list of the intermediate values of the reduction. See ‘-reduce-r-from’ (*note -reduce-r-from::) for explanation of the arguments. See also: ‘-reductions-r’ (*note -reductions-r::), ‘-reductions’ (*note -reductions::), ‘-reduce’ (*note -reduce::) (-reductions-r-from (lambda (i a) (format "(%d FN %s)" i a)) "INIT" '(1 2 3 4)) ⇒ '("(1 FN (2 FN (3 FN (4 FN INIT))))" "(2 FN (3 FN (4 FN INIT)))" "(3 FN (4 FN INIT))" "(4 FN INIT)" "INIT") (-reductions-r-from 'max 0 '(2 1 4 3)) ⇒ '(4 4 4 3 0) (-reductions-r-from '* 1 '(1 2 3 4)) ⇒ '(24 24 12 4 1) -- Function: -reductions (fn list) Return a list of the intermediate values of the reduction. See ‘-reduce’ (*note -reduce::) for explanation of the arguments. See also: ‘-reductions-from’ (*note -reductions-from::), ‘-reductions-r’ (*note -reductions-r::), ‘-reduce-r’ (*note -reduce-r::) (-reductions (lambda (a i) (format "(%s FN %d)" a i)) '(1 2 3 4)) ⇒ '(1 "(1 FN 2)" "((1 FN 2) FN 3)" "(((1 FN 2) FN 3) FN 4)") (-reductions '+ '(1 2 3 4)) ⇒ '(1 3 6 10) (-reductions '* '(1 2 3 4)) ⇒ '(1 2 6 24) -- Function: -reductions-r (fn list) Return a list of the intermediate values of the reduction. See ‘-reduce-r’ (*note -reduce-r::) for explanation of the arguments. See also: ‘-reductions-r-from’ (*note -reductions-r-from::), ‘-reductions’ (*note -reductions::), ‘-reduce’ (*note -reduce::) (-reductions-r (lambda (i a) (format "(%d FN %s)" i a)) '(1 2 3 4)) ⇒ '("(1 FN (2 FN (3 FN 4)))" "(2 FN (3 FN 4))" "(3 FN 4)" 4) (-reductions-r '+ '(1 2 3 4)) ⇒ '(10 9 7 4) (-reductions-r '* '(1 2 3 4)) ⇒ '(24 24 12 4) -- Function: -count (pred list) Counts the number of items in LIST where (PRED item) is non-nil. (-count 'even? '(1 2 3 4 5)) ⇒ 2 (--count (< it 4) '(1 2 3 4)) ⇒ 3 -- Function: -sum (list) Return the sum of LIST. (-sum '()) ⇒ 0 (-sum '(1)) ⇒ 1 (-sum '(1 2 3 4)) ⇒ 10 -- Function: -running-sum (list) Return a list with running sums of items in LIST. LIST must be non-empty. (-running-sum '(1 2 3 4)) ⇒ '(1 3 6 10) (-running-sum '(1)) ⇒ '(1) (-running-sum '()) ⇒ error -- Function: -product (list) Return the product of LIST. (-product '()) ⇒ 1 (-product '(1)) ⇒ 1 (-product '(1 2 3 4)) ⇒ 24 -- Function: -running-product (list) Return a list with running products of items in LIST. LIST must be non-empty. (-running-product '(1 2 3 4)) ⇒ '(1 2 6 24) (-running-product '(1)) ⇒ '(1) (-running-product '()) ⇒ error -- Function: -inits (list) Return all prefixes of LIST. (-inits '(1 2 3 4)) ⇒ '(nil (1) (1 2) (1 2 3) (1 2 3 4)) (-inits nil) ⇒ '(nil) (-inits '(1)) ⇒ '(nil (1)) -- Function: -tails (list) Return all suffixes of LIST (-tails '(1 2 3 4)) ⇒ '((1 2 3 4) (2 3 4) (3 4) (4) nil) (-tails nil) ⇒ '(nil) (-tails '(1)) ⇒ '((1) nil) -- Function: -common-prefix (&rest lists) Return the longest common prefix of LISTS. (-common-prefix '(1)) ⇒ '(1) (-common-prefix '(1 2) '(3 4) '(1 2)) ⇒ nil (-common-prefix '(1 2) '(1 2 3) '(1 2 3 4)) ⇒ '(1 2) -- Function: -common-suffix (&rest lists) Return the longest common suffix of LISTS. (-common-suffix '(1)) ⇒ '(1) (-common-suffix '(1 2) '(3 4) '(1 2)) ⇒ nil (-common-suffix '(1 2 3 4) '(2 3 4) '(3 4)) ⇒ '(3 4) -- Function: -min (list) Return the smallest value from LIST of numbers or markers. (-min '(0)) ⇒ 0 (-min '(3 2 1)) ⇒ 1 (-min '(1 2 3)) ⇒ 1 -- Function: -min-by (comparator list) Take a comparison function COMPARATOR and a LIST and return the least element of the list by the comparison function. See also combinator ‘-on’ (*note -on::) which can transform the values before comparing them. (-min-by '> '(4 3 6 1)) ⇒ 1 (--min-by (> (car it) (car other)) '((1 2 3) (2) (3 2))) ⇒ '(1 2 3) (--min-by (> (length it) (length other)) '((1 2 3) (2) (3 2))) ⇒ '(2) -- Function: -max (list) Return the largest value from LIST of numbers or markers. (-max '(0)) ⇒ 0 (-max '(3 2 1)) ⇒ 3 (-max '(1 2 3)) ⇒ 3 -- Function: -max-by (comparator list) Take a comparison function COMPARATOR and a LIST and return the greatest element of the list by the comparison function. See also combinator ‘-on’ (*note -on::) which can transform the values before comparing them. (-max-by '> '(4 3 6 1)) ⇒ 6 (--max-by (> (car it) (car other)) '((1 2 3) (2) (3 2))) ⇒ '(3 2) (--max-by (> (length it) (length other)) '((1 2 3) (2) (3 2))) ⇒ '(1 2 3)  File: dash.info, Node: Unfolding, Next: Predicates, Prev: Reductions, Up: Functions 2.5 Unfolding ============= Operations dual to reductions, building lists from seed value rather than consuming a list to produce a single value. -- Function: -iterate (fun init n) Return a list of iterated applications of FUN to INIT. This means a list of form: (init (fun init) (fun (fun init)) ...) N is the length of the returned list. (-iterate '1+ 1 10) ⇒ '(1 2 3 4 5 6 7 8 9 10) (-iterate (lambda (x) (+ x x)) 2 5) ⇒ '(2 4 8 16 32) (--iterate (* it it) 2 5) ⇒ '(2 4 16 256 65536) -- Function: -unfold (fun seed) Build a list from SEED using FUN. This is "dual" operation to ‘-reduce-r’ (*note -reduce-r::): while -reduce-r consumes a list to produce a single value, ‘-unfold’ (*note -unfold::) takes a seed value and builds a (potentially infinite!) list. FUN should return ‘nil’ to stop the generating process, or a cons (A . B), where A will be prepended to the result and B is the new seed. (-unfold (lambda (x) (unless (= x 0) (cons x (1- x)))) 10) ⇒ '(10 9 8 7 6 5 4 3 2 1) (--unfold (when it (cons it (cdr it))) '(1 2 3 4)) ⇒ '((1 2 3 4) (2 3 4) (3 4) (4)) (--unfold (when it (cons it (butlast it))) '(1 2 3 4)) ⇒ '((1 2 3 4) (1 2 3) (1 2) (1))  File: dash.info, Node: Predicates, Next: Partitioning, Prev: Unfolding, Up: Functions 2.6 Predicates ============== -- Function: -any? (pred list) Return t if (PRED x) is non-nil for any x in LIST, else nil. Alias: ‘-any-p’, ‘-some?’, ‘-some-p’ (-any? 'even? '(1 2 3)) ⇒ t (-any? 'even? '(1 3 5)) ⇒ nil (-any? 'null '(1 3 5)) ⇒ nil -- Function: -all? (pred list) Return t if (PRED x) is non-nil for all x in LIST, else nil. Alias: ‘-all-p’, ‘-every?’, ‘-every-p’ (-all? 'even? '(1 2 3)) ⇒ nil (-all? 'even? '(2 4 6)) ⇒ t (--all? (= 0 (% it 2)) '(2 4 6)) ⇒ t -- Function: -none? (pred list) Return t if (PRED x) is nil for all x in LIST, else nil. Alias: ‘-none-p’ (-none? 'even? '(1 2 3)) ⇒ nil (-none? 'even? '(1 3 5)) ⇒ t (--none? (= 0 (% it 2)) '(1 2 3)) ⇒ nil -- Function: -only-some? (pred list) Return ‘t‘ if at least one item of LIST matches PRED and at least one item of LIST does not match PRED. Return ‘nil‘ both if all items match the predicate or if none of the items match the predicate. Alias: ‘-only-some-p’ (-only-some? 'even? '(1 2 3)) ⇒ t (-only-some? 'even? '(1 3 5)) ⇒ nil (-only-some? 'even? '(2 4 6)) ⇒ nil -- Function: -contains? (list element) Return non-nil if LIST contains ELEMENT. The test for equality is done with ‘equal’, or with ‘-compare-fn’ if that’s non-nil. Alias: ‘-contains-p’ (-contains? '(1 2 3) 1) ⇒ t (-contains? '(1 2 3) 2) ⇒ t (-contains? '(1 2 3) 4) ⇒ nil -- Function: -same-items? (list list2) Return true if LIST and LIST2 has the same items. The order of the elements in the lists does not matter. Alias: ‘-same-items-p’ (-same-items? '(1 2 3) '(1 2 3)) ⇒ t (-same-items? '(1 2 3) '(3 2 1)) ⇒ t (-same-items? '(1 2 3) '(1 2 3 4)) ⇒ nil -- Function: -is-prefix? (prefix list) Return non-nil if PREFIX is prefix of LIST. Alias: ‘-is-prefix-p’ (-is-prefix? '(1 2 3) '(1 2 3 4 5)) ⇒ t (-is-prefix? '(1 2 3 4 5) '(1 2 3)) ⇒ nil (-is-prefix? '(1 3) '(1 2 3 4 5)) ⇒ nil -- Function: -is-suffix? (suffix list) Return non-nil if SUFFIX is suffix of LIST. Alias: ‘-is-suffix-p’ (-is-suffix? '(3 4 5) '(1 2 3 4 5)) ⇒ t (-is-suffix? '(1 2 3 4 5) '(3 4 5)) ⇒ nil (-is-suffix? '(3 5) '(1 2 3 4 5)) ⇒ nil -- Function: -is-infix? (infix list) Return non-nil if INFIX is infix of LIST. This operation runs in O(n^2) time Alias: ‘-is-infix-p’ (-is-infix? '(1 2 3) '(1 2 3 4 5)) ⇒ t (-is-infix? '(2 3 4) '(1 2 3 4 5)) ⇒ t (-is-infix? '(3 4 5) '(1 2 3 4 5)) ⇒ t  File: dash.info, Node: Partitioning, Next: Indexing, Prev: Predicates, Up: Functions 2.7 Partitioning ================ Functions partitioning the input list into a list of lists. -- Function: -split-at (n list) Return a list of ((-take N LIST) (-drop N LIST)), in no more than one pass through the list. (-split-at 3 '(1 2 3 4 5)) ⇒ '((1 2 3) (4 5)) (-split-at 17 '(1 2 3 4 5)) ⇒ '((1 2 3 4 5) nil) -- Function: -split-with (pred list) Return a list of ((-take-while PRED LIST) (-drop-while PRED LIST)), in no more than one pass through the list. (-split-with 'even? '(1 2 3 4)) ⇒ '(nil (1 2 3 4)) (-split-with 'even? '(2 4 5 6)) ⇒ '((2 4) (5 6)) (--split-with (< it 4) '(1 2 3 4 3 2 1)) ⇒ '((1 2 3) (4 3 2 1)) -- Macro: -split-on (item list) Split the LIST each time ITEM is found. Unlike ‘-partition-by’ (*note -partition-by::), the ITEM is discarded from the results. Empty lists are also removed from the result. Comparison is done by ‘equal’. See also ‘-split-when’ (*note -split-when::) (-split-on '| '(Nil | Leaf a | Node [Tree a])) ⇒ '((Nil) (Leaf a) (Node [Tree a])) (-split-on ':endgroup '("a" "b" :endgroup "c" :endgroup "d" "e")) ⇒ '(("a" "b") ("c") ("d" "e")) (-split-on ':endgroup '("a" "b" :endgroup :endgroup "d" "e")) ⇒ '(("a" "b") ("d" "e")) -- Function: -split-when (fn list) Split the LIST on each element where FN returns non-nil. Unlike ‘-partition-by’ (*note -partition-by::), the "matched" element is discarded from the results. Empty lists are also removed from the result. This function can be thought of as a generalization of ‘split-string’. (-split-when 'even? '(1 2 3 4 5 6)) ⇒ '((1) (3) (5)) (-split-when 'even? '(1 2 3 4 6 8 9)) ⇒ '((1) (3) (9)) (--split-when (memq it '(&optional &rest)) '(a b &optional c d &rest args)) ⇒ '((a b) (c d) (args)) -- Function: -separate (pred list) Return a list of ((-filter PRED LIST) (-remove PRED LIST)), in one pass through the list. (-separate (lambda (num) (= 0 (% num 2))) '(1 2 3 4 5 6 7)) ⇒ '((2 4 6) (1 3 5 7)) (--separate (< it 5) '(3 7 5 9 3 2 1 4 6)) ⇒ '((3 3 2 1 4) (7 5 9 6)) (-separate 'cdr '((1 2) (1) (1 2 3) (4))) ⇒ '(((1 2) (1 2 3)) ((1) (4))) -- Function: -partition (n list) Return a new list with the items in LIST grouped into N-sized sublists. If there are not enough items to make the last group N-sized, those items are discarded. (-partition 2 '(1 2 3 4 5 6)) ⇒ '((1 2) (3 4) (5 6)) (-partition 2 '(1 2 3 4 5 6 7)) ⇒ '((1 2) (3 4) (5 6)) (-partition 3 '(1 2 3 4 5 6 7)) ⇒ '((1 2 3) (4 5 6)) -- Function: -partition-all (n list) Return a new list with the items in LIST grouped into N-sized sublists. The last group may contain less than N items. (-partition-all 2 '(1 2 3 4 5 6)) ⇒ '((1 2) (3 4) (5 6)) (-partition-all 2 '(1 2 3 4 5 6 7)) ⇒ '((1 2) (3 4) (5 6) (7)) (-partition-all 3 '(1 2 3 4 5 6 7)) ⇒ '((1 2 3) (4 5 6) (7)) -- Function: -partition-in-steps (n step list) Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart. If there are not enough items to make the last group N-sized, those items are discarded. (-partition-in-steps 2 1 '(1 2 3 4)) ⇒ '((1 2) (2 3) (3 4)) (-partition-in-steps 3 2 '(1 2 3 4)) ⇒ '((1 2 3)) (-partition-in-steps 3 2 '(1 2 3 4 5)) ⇒ '((1 2 3) (3 4 5)) -- Function: -partition-all-in-steps (n step list) Return a new list with the items in LIST grouped into N-sized sublists at offsets STEP apart. The last groups may contain less than N items. (-partition-all-in-steps 2 1 '(1 2 3 4)) ⇒ '((1 2) (2 3) (3 4) (4)) (-partition-all-in-steps 3 2 '(1 2 3 4)) ⇒ '((1 2 3) (3 4)) (-partition-all-in-steps 3 2 '(1 2 3 4 5)) ⇒ '((1 2 3) (3 4 5) (5)) -- Function: -partition-by (fn list) Apply FN to each item in LIST, splitting it each time FN returns a new value. (-partition-by 'even? '()) ⇒ '() (-partition-by 'even? '(1 1 2 2 2 3 4 6 8)) ⇒ '((1 1) (2 2 2) (3) (4 6 8)) (--partition-by (< it 3) '(1 2 3 4 3 2 1)) ⇒ '((1 2) (3 4 3) (2 1)) -- Function: -partition-by-header (fn list) Apply FN to the first item in LIST. That is the header value. Apply FN to each item in LIST, splitting it each time FN returns the header value, but only after seeing at least one other value (the body). (--partition-by-header (= it 1) '(1 2 3 1 2 1 2 3 4)) ⇒ '((1 2 3) (1 2) (1 2 3 4)) (--partition-by-header (> it 0) '(1 2 0 1 0 1 2 3 0)) ⇒ '((1 2 0) (1 0) (1 2 3 0)) (-partition-by-header 'even? '(2 1 1 1 4 1 3 5 6 6 1)) ⇒ '((2 1 1 1) (4 1 3 5) (6 6 1)) -- Function: -partition-after-pred (pred list) Partition directly after each time PRED is true on an element of LIST. (-partition-after-pred #'odd? '()) ⇒ '() (-partition-after-pred #'odd? '(1)) ⇒ '((1)) (-partition-after-pred #'odd? '(0 1)) ⇒ '((0 1)) -- Function: -partition-before-pred (pred list) Partition directly before each time PRED is true on an element of LIST. (-partition-before-pred #'odd? '()) ⇒ '() (-partition-before-pred #'odd? '(1)) ⇒ '((1)) (-partition-before-pred #'odd? '(0 1)) ⇒ '((0) (1)) -- Function: -partition-before-item (item list) Partition directly before each time ITEM appears in LIST. (-partition-before-item 3 '()) ⇒ '() (-partition-before-item 3 '(1)) ⇒ '((1)) (-partition-before-item 3 '(3)) ⇒ '((3)) -- Function: -partition-after-item (item list) Partition directly after each time ITEM appears in LIST. (-partition-after-item 3 '()) ⇒ '() (-partition-after-item 3 '(1)) ⇒ '((1)) (-partition-after-item 3 '(3)) ⇒ '((3)) -- Function: -group-by (fn list) Separate LIST into an alist whose keys are FN applied to the elements of LIST. Keys are compared by ‘equal’. (-group-by 'even? '()) ⇒ '() (-group-by 'even? '(1 1 2 2 2 3 4 6 8)) ⇒ '((nil 1 1 3) (t 2 2 2 4 6 8)) (--group-by (car (split-string it "/")) '("a/b" "c/d" "a/e")) ⇒ '(("a" "a/b" "a/e") ("c" "c/d"))  File: dash.info, Node: Indexing, Next: Set operations, Prev: Partitioning, Up: Functions 2.8 Indexing ============ Return indices of elements based on predicates, sort elements by indices etc. -- Function: -elem-index (elem list) Return the index of the first element in the given LIST which is equal to the query element ELEM, or nil if there is no such element. (-elem-index 2 '(6 7 8 2 3 4)) ⇒ 3 (-elem-index "bar" '("foo" "bar" "baz")) ⇒ 1 (-elem-index '(1 2) '((3) (5 6) (1 2) nil)) ⇒ 2 -- Function: -elem-indices (elem list) Return the indices of all elements in LIST equal to the query element ELEM, in ascending order. (-elem-indices 2 '(6 7 8 2 3 4 2 1)) ⇒ '(3 6) (-elem-indices "bar" '("foo" "bar" "baz")) ⇒ '(1) (-elem-indices '(1 2) '((3) (1 2) (5 6) (1 2) nil)) ⇒ '(1 3) -- Function: -find-index (pred list) Take a predicate PRED and a LIST and return the index of the first element in the list satisfying the predicate, or nil if there is no such element. See also ‘-first’ (*note -first::). (-find-index 'even? '(2 4 1 6 3 3 5 8)) ⇒ 0 (--find-index (< 5 it) '(2 4 1 6 3 3 5 8)) ⇒ 3 (-find-index (-partial 'string-lessp "baz") '("bar" "foo" "baz")) ⇒ 1 -- Function: -find-last-index (pred list) Take a predicate PRED and a LIST and return the index of the last element in the list satisfying the predicate, or nil if there is no such element. See also ‘-last’ (*note -last::). (-find-last-index 'even? '(2 4 1 6 3 3 5 8)) ⇒ 7 (--find-last-index (< 5 it) '(2 7 1 6 3 8 5 2)) ⇒ 5 (-find-last-index (-partial 'string-lessp "baz") '("q" "foo" "baz")) ⇒ 1 -- Function: -find-indices (pred list) Return the indices of all elements in LIST satisfying the predicate PRED, in ascending order. (-find-indices 'even? '(2 4 1 6 3 3 5 8)) ⇒ '(0 1 3 7) (--find-indices (< 5 it) '(2 4 1 6 3 3 5 8)) ⇒ '(3 7) (-find-indices (-partial 'string-lessp "baz") '("bar" "foo" "baz")) ⇒ '(1) -- Function: -grade-up (comparator list) Grade elements of LIST using COMPARATOR relation, yielding a permutation vector such that applying this permutation to LIST sorts it in ascending order. (-grade-up '< '(3 1 4 2 1 3 3)) ⇒ '(1 4 3 0 5 6 2) (let ((l '(3 1 4 2 1 3 3))) (-select-by-indices (-grade-up '< l) l)) ⇒ '(1 1 2 3 3 3 4) -- Function: -grade-down (comparator list) Grade elements of LIST using COMPARATOR relation, yielding a permutation vector such that applying this permutation to LIST sorts it in descending order. (-grade-down '< '(3 1 4 2 1 3 3)) ⇒ '(2 0 5 6 3 1 4) (let ((l '(3 1 4 2 1 3 3))) (-select-by-indices (-grade-down '< l) l)) ⇒ '(4 3 3 3 2 1 1)  File: dash.info, Node: Set operations, Next: Other list operations, Prev: Indexing, Up: Functions 2.9 Set operations ================== Operations pretending lists are sets. -- Function: -union (list list2) Return a new list containing the elements of LIST and elements of LIST2 that are not in LIST. The test for equality is done with ‘equal’, or with ‘-compare-fn’ if that’s non-nil. (-union '(1 2 3) '(3 4 5)) ⇒ '(1 2 3 4 5) (-union '(1 2 3 4) '()) ⇒ '(1 2 3 4) (-union '(1 1 2 2) '(3 2 1)) ⇒ '(1 1 2 2 3) -- Function: -difference (list list2) Return a new list with only the members of LIST that are not in LIST2. The test for equality is done with ‘equal’, or with ‘-compare-fn’ if that’s non-nil. (-difference '() '()) ⇒ '() (-difference '(1 2 3) '(4 5 6)) ⇒ '(1 2 3) (-difference '(1 2 3 4) '(3 4 5 6)) ⇒ '(1 2) -- Function: -intersection (list list2) Return a new list containing only the elements that are members of both LIST and LIST2. The test for equality is done with ‘equal’, or with ‘-compare-fn’ if that’s non-nil. (-intersection '() '()) ⇒ '() (-intersection '(1 2 3) '(4 5 6)) ⇒ '() (-intersection '(1 2 3 4) '(3 4 5 6)) ⇒ '(3 4) -- Function: -powerset (list) Return the power set of LIST. (-powerset '()) ⇒ '(nil) (-powerset '(x y z)) ⇒ '((x y z) (x y) (x z) (x) (y z) (y) (z) nil) -- Function: -permutations (list) Return the permutations of LIST. (-permutations '()) ⇒ '(nil) (-permutations '(1 2)) ⇒ '((1 2) (2 1)) (-permutations '(a b c)) ⇒ '((a b c) (a c b) (b a c) (b c a) (c a b) (c b a)) -- Function: -distinct (list) Return a new list with all duplicates removed. The test for equality is done with ‘equal’, or with ‘-compare-fn’ if that’s non-nil. Alias: ‘-uniq’ (-distinct '()) ⇒ '() (-distinct '(1 2 2 4)) ⇒ '(1 2 4) (-distinct '(t t t)) ⇒ '(t)  File: dash.info, Node: Other list operations, Next: Tree operations, Prev: Set operations, Up: Functions 2.10 Other list operations ========================== Other list functions not fit to be classified elsewhere. -- Function: -rotate (n list) Rotate LIST N places to the right. With N negative, rotate to the left. The time complexity is O(n). (-rotate 3 '(1 2 3 4 5 6 7)) ⇒ '(5 6 7 1 2 3 4) (-rotate -3 '(1 2 3 4 5 6 7)) ⇒ '(4 5 6 7 1 2 3) (-rotate 16 '(1 2 3 4 5 6 7)) ⇒ '(6 7 1 2 3 4 5) -- Function: -repeat (n x) Return a list with X repeated N times. Return nil if N is less than 1. (-repeat 3 :a) ⇒ '(:a :a :a) (-repeat 1 :a) ⇒ '(:a) (-repeat 0 :a) ⇒ nil -- Function: -cons* (&rest args) Make a new list from the elements of ARGS. The last 2 members of ARGS are used as the final cons of the result so if the final member of ARGS is not a list the result is a dotted list. (-cons* 1 2) ⇒ '(1 . 2) (-cons* 1 2 3) ⇒ '(1 2 . 3) (-cons* 1) ⇒ 1 -- Function: -snoc (list elem &rest elements) Append ELEM to the end of the list. This is like ‘cons’, but operates on the end of list. If ELEMENTS is non nil, append these to the list as well. (-snoc '(1 2 3) 4) ⇒ '(1 2 3 4) (-snoc '(1 2 3) 4 5 6) ⇒ '(1 2 3 4 5 6) (-snoc '(1 2 3) '(4 5 6)) ⇒ '(1 2 3 (4 5 6)) -- Function: -interpose (sep list) Return a new list of all elements in LIST separated by SEP. (-interpose "-" '()) ⇒ '() (-interpose "-" '("a")) ⇒ '("a") (-interpose "-" '("a" "b" "c")) ⇒ '("a" "-" "b" "-" "c") -- Function: -interleave (&rest lists) Return a new list of the first item in each list, then the second etc. (-interleave '(1 2) '("a" "b")) ⇒ '(1 "a" 2 "b") (-interleave '(1 2) '("a" "b") '("A" "B")) ⇒ '(1 "a" "A" 2 "b" "B") (-interleave '(1 2 3) '("a" "b")) ⇒ '(1 "a" 2 "b") -- Function: -zip-with (fn list1 list2) Zip the two lists LIST1 and LIST2 using a function FN. This function is applied pairwise taking as first argument element of LIST1 and as second argument element of LIST2 at corresponding position. The anaphoric form ‘--zip-with’ binds the elements from LIST1 as symbol ‘it’, and the elements from LIST2 as symbol ‘other’. (-zip-with '+ '(1 2 3) '(4 5 6)) ⇒ '(5 7 9) (-zip-with 'cons '(1 2 3) '(4 5 6)) ⇒ '((1 . 4) (2 . 5) (3 . 6)) (--zip-with (concat it " and " other) '("Batman" "Jekyll") '("Robin" "Hyde")) ⇒ '("Batman and Robin" "Jekyll and Hyde") -- Function: -zip (&rest lists) Zip LISTS together. Group the head of each list, followed by the second elements of each list, and so on. The lengths of the returned groupings are equal to the length of the shortest input list. If two lists are provided as arguments, return the groupings as a list of cons cells. Otherwise, return the groupings as a list of lists. Use ‘-zip-lists’ (*note -zip-lists::) if you need the return value to always be a list of lists. Alias: ‘-zip-pair’ See also: ‘-zip-lists’ (*note -zip-lists::) (-zip '(1 2 3) '(4 5 6)) ⇒ '((1 . 4) (2 . 5) (3 . 6)) (-zip '(1 2 3) '(4 5 6 7)) ⇒ '((1 . 4) (2 . 5) (3 . 6)) (-zip '(1 2) '(3 4 5) '(6)) ⇒ '((1 3 6)) -- Function: -zip-lists (&rest lists) Zip LISTS together. Group the head of each list, followed by the second elements of each list, and so on. The lengths of the returned groupings are equal to the length of the shortest input list. The return value is always list of lists, which is a difference from ‘-zip-pair’ which returns a cons-cell in case two input lists are provided. See also: ‘-zip’ (*note -zip::) (-zip-lists '(1 2 3) '(4 5 6)) ⇒ '((1 4) (2 5) (3 6)) (-zip-lists '(1 2 3) '(4 5 6 7)) ⇒ '((1 4) (2 5) (3 6)) (-zip-lists '(1 2) '(3 4 5) '(6)) ⇒ '((1 3 6)) -- Function: -zip-fill (fill-value &rest lists) Zip LISTS, with FILL-VALUE padded onto the shorter lists. The lengths of the returned groupings are equal to the length of the longest input list. (-zip-fill 0 '(1 2 3 4 5) '(6 7 8 9)) ⇒ '((1 . 6) (2 . 7) (3 . 8) (4 . 9) (5 . 0)) -- Function: -unzip (lists) Unzip LISTS. This works just like ‘-zip’ (*note -zip::) but takes a list of lists instead of a variable number of arguments, such that (-unzip (-zip L1 L2 L3 ...)) is identity (given that the lists are the same length). Note in particular that calling this on a list of two lists will return a list of cons-cells such that the above identity works. See also: ‘-zip’ (*note -zip::) (-unzip (-zip '(1 2 3) '(a b c) '("e" "f" "g"))) ⇒ '((1 2 3) (a b c) ("e" "f" "g")) (-unzip '((1 2) (3 4) (5 6) (7 8) (9 10))) ⇒ '((1 3 5 7 9) (2 4 6 8 10)) (-unzip '((1 2) (3 4))) ⇒ '((1 . 3) (2 . 4)) -- Function: -cycle (list) Return an infinite circular copy of LIST. The returned list cycles through the elements of LIST and repeats from the beginning. (-take 5 (-cycle '(1 2 3))) ⇒ '(1 2 3 1 2) (-take 7 (-cycle '(1 "and" 3))) ⇒ '(1 "and" 3 1 "and" 3 1) (-zip (-cycle '(1 2 3)) '(1 2)) ⇒ '((1 . 1) (2 . 2)) -- Function: -pad (fill-value &rest lists) Appends FILL-VALUE to the end of each list in LISTS such that they will all have the same length. (-pad 0 '()) ⇒ '(nil) (-pad 0 '(1)) ⇒ '((1)) (-pad 0 '(1 2 3) '(4 5)) ⇒ '((1 2 3) (4 5 0)) -- Function: -table (fn &rest lists) Compute outer product of LISTS using function FN. The function FN should have the same arity as the number of supplied lists. The outer product is computed by applying fn to all possible combinations created by taking one element from each list in order. The dimension of the result is (length lists). See also: ‘-table-flat’ (*note -table-flat::) (-table '* '(1 2 3) '(1 2 3)) ⇒ '((1 2 3) (2 4 6) (3 6 9)) (-table (lambda (a b) (-sum (-zip-with '* a b))) '((1 2) (3 4)) '((1 3) (2 4))) ⇒ '((7 15) (10 22)) (apply '-table 'list (-repeat 3 '(1 2))) ⇒ '((((1 1 1) (2 1 1)) ((1 2 1) (2 2 1))) (((1 1 2) (2 1 2)) ((1 2 2) (2 2 2)))) -- Function: -table-flat (fn &rest lists) Compute flat outer product of LISTS using function FN. The function FN should have the same arity as the number of supplied lists. The outer product is computed by applying fn to all possible combinations created by taking one element from each list in order. The results are flattened, ignoring the tensor structure of the result. This is equivalent to calling: (-flatten-n (1- (length lists)) (apply ’-table fn lists)) but the implementation here is much more efficient. See also: ‘-flatten-n’ (*note -flatten-n::), ‘-table’ (*note -table::) (-table-flat 'list '(1 2 3) '(a b c)) ⇒ '((1 a) (2 a) (3 a) (1 b) (2 b) (3 b) (1 c) (2 c) (3 c)) (-table-flat '* '(1 2 3) '(1 2 3)) ⇒ '(1 2 3 2 4 6 3 6 9) (apply '-table-flat 'list (-repeat 3 '(1 2))) ⇒ '((1 1 1) (2 1 1) (1 2 1) (2 2 1) (1 1 2) (2 1 2) (1 2 2) (2 2 2)) -- Function: -first (pred list) Return the first x in LIST where (PRED x) is non-nil, else nil. To get the first item in the list no questions asked, use ‘car’. Alias: ‘-find’ (-first 'even? '(1 2 3)) ⇒ 2 (-first 'even? '(1 3 5)) ⇒ nil (-first 'null '(1 3 5)) ⇒ nil -- Function: -some (pred list) Return (PRED x) for the first LIST item where (PRED x) is non-nil, else nil. Alias: ‘-any’ (-some 'even? '(1 2 3)) ⇒ t (-some 'null '(1 2 3)) ⇒ nil (-some 'null '(1 2 nil)) ⇒ t -- Function: -last (pred list) Return the last x in LIST where (PRED x) is non-nil, else nil. (-last 'even? '(1 2 3 4 5 6 3 3 3)) ⇒ 6 (-last 'even? '(1 3 7 5 9)) ⇒ nil (--last (> (length it) 3) '("a" "looong" "word" "and" "short" "one")) ⇒ "short" -- Function: -first-item (list) Return the first item of LIST, or nil on an empty list. See also: ‘-second-item’ (*note -second-item::), ‘-last-item’ (*note -last-item::). (fn LIST) (-first-item '(1 2 3)) ⇒ 1 (-first-item nil) ⇒ nil (let ((list (list 1 2 3))) (setf (-first-item list) 5) list) ⇒ '(5 2 3) -- Function: -second-item (arg1) Return the second item of LIST, or nil if LIST is too short. See also: ‘-third-item’ (*note -third-item::). (fn LIST) (-second-item '(1 2 3)) ⇒ 2 (-second-item nil) ⇒ nil -- Function: -third-item (arg1) Return the third item of LIST, or nil if LIST is too short. See also: ‘-fourth-item’ (*note -fourth-item::). (fn LIST) (-third-item '(1 2 3)) ⇒ 3 (-third-item nil) ⇒ nil -- Function: -fourth-item (list) Return the fourth item of LIST, or nil if LIST is too short. See also: ‘-fifth-item’ (*note -fifth-item::). (-fourth-item '(1 2 3 4)) ⇒ 4 (-fourth-item nil) ⇒ nil -- Function: -fifth-item (list) Return the fifth item of LIST, or nil if LIST is too short. See also: ‘-last-item’ (*note -last-item::). (-fifth-item '(1 2 3 4 5)) ⇒ 5 (-fifth-item nil) ⇒ nil -- Function: -last-item (list) Return the last item of LIST, or nil on an empty list. (-last-item '(1 2 3)) ⇒ 3 (-last-item nil) ⇒ nil (let ((list (list 1 2 3))) (setf (-last-item list) 5) list) ⇒ '(1 2 5) -- Function: -butlast (list) Return a list of all items in list except for the last. (-butlast '(1 2 3)) ⇒ '(1 2) (-butlast '(1 2)) ⇒ '(1) (-butlast '(1)) ⇒ nil -- Function: -sort (comparator list) Sort LIST, stably, comparing elements using COMPARATOR. Return the sorted list. LIST is NOT modified by side effects. COMPARATOR is called with two elements of LIST, and should return non-nil if the first element should sort before the second. (-sort '< '(3 1 2)) ⇒ '(1 2 3) (-sort '> '(3 1 2)) ⇒ '(3 2 1) (--sort (< it other) '(3 1 2)) ⇒ '(1 2 3) -- Function: -list (&rest args) Return a list with ARGS. If first item of ARGS is already a list, simply return ARGS. If not, return a list with ARGS as elements. (-list 1) ⇒ '(1) (-list 1 2 3) ⇒ '(1 2 3) (-list '(1 2 3)) ⇒ '(1 2 3) -- Function: -fix (fn list) Compute the (least) fixpoint of FN with initial input LIST. FN is called at least once, results are compared with ‘equal’. (-fix (lambda (l) (-non-nil (--mapcat (-split-at (/ (length it) 2) it) l))) '((1 2 3 4 5 6))) ⇒ '((1) (2) (3) (4) (5) (6)) (let ((data '(("starwars" "scifi") ("jedi" "starwars" "warrior")))) (--fix (-uniq (--mapcat (cons it (cdr (assoc it data))) it)) '("jedi" "book"))) ⇒ '("jedi" "starwars" "warrior" "scifi" "book")  File: dash.info, Node: Tree operations, Next: Threading macros, Prev: Other list operations, Up: Functions 2.11 Tree operations ==================== Functions pretending lists are trees. -- Function: -tree-seq (branch children tree) Return a sequence of the nodes in TREE, in depth-first search order. BRANCH is a predicate of one argument that returns non-nil if the passed argument is a branch, that is, a node that can have children. CHILDREN is a function of one argument that returns the children of the passed branch node. Non-branch nodes are simply copied. (-tree-seq 'listp 'identity '(1 (2 3) 4 (5 (6 7)))) ⇒ '((1 (2 3) 4 (5 (6 7))) 1 (2 3) 2 3 4 (5 (6 7)) 5 (6 7) 6 7) (-tree-seq 'listp 'reverse '(1 (2 3) 4 (5 (6 7)))) ⇒ '((1 (2 3) 4 (5 (6 7))) (5 (6 7)) (6 7) 7 6 5 4 (2 3) 3 2 1) (--tree-seq (vectorp it) (append it nil) [1 [2 3] 4 [5 [6 7]]]) ⇒ '([1 [2 3] 4 [5 [6 7]]] 1 [2 3] 2 3 4 [5 [6 7]] 5 [6 7] 6 7) -- Function: -tree-map (fn tree) Apply FN to each element of TREE while preserving the tree structure. (-tree-map '1+ '(1 (2 3) (4 (5 6) 7))) ⇒ '(2 (3 4) (5 (6 7) 8)) (-tree-map '(lambda (x) (cons x (expt 2 x))) '(1 (2 3) 4)) ⇒ '((1 . 2) ((2 . 4) (3 . 8)) (4 . 16)) (--tree-map (length it) '("" ("

" "text" "

") "")) ⇒ '(6 (3 4 4) 7) -- Function: -tree-map-nodes (pred fun tree) Call FUN on each node of TREE that satisfies PRED. If PRED returns nil, continue descending down this node. If PRED returns non-nil, apply FUN to this node and do not descend further. (-tree-map-nodes 'vectorp (lambda (x) (-sum (append x nil))) '(1 [2 3] 4 (5 [6 7] 8))) ⇒ '(1 5 4 (5 13 8)) (-tree-map-nodes 'keywordp (lambda (x) (symbol-name x)) '(1 :foo 4 ((5 6 :bar) :baz 8))) ⇒ '(1 ":foo" 4 ((5 6 ":bar") ":baz" 8)) (--tree-map-nodes (eq (car-safe it) 'add-mode) (-concat it (list :mode 'emacs-lisp-mode)) '(with-mode emacs-lisp-mode (foo bar) (add-mode a b) (baz (add-mode c d)))) ⇒ '(with-mode emacs-lisp-mode (foo bar) (add-mode a b :mode emacs-lisp-mode) (baz (add-mode c d :mode emacs-lisp-mode))) -- Function: -tree-reduce (fn tree) Use FN to reduce elements of list TREE. If elements of TREE are lists themselves, apply the reduction recursively. FN is first applied to first element of the list and second element, then on this result and third element from the list etc. See ‘-reduce-r’ (*note -reduce-r::) for how exactly are lists of zero or one element handled. (-tree-reduce '+ '(1 (2 3) (4 5))) ⇒ 15 (-tree-reduce 'concat '("strings" (" on" " various") ((" levels")))) ⇒ "strings on various levels" (--tree-reduce (cond ((stringp it) (concat it " " acc)) (t (let ((sn (symbol-name it))) (concat "<" sn ">" acc "")))) '(body (p "some words") (div "more" (b "bold") "words"))) ⇒ "

some words

more bold words
" -- Function: -tree-reduce-from (fn init-value tree) Use FN to reduce elements of list TREE. If elements of TREE are lists themselves, apply the reduction recursively. FN is first applied to INIT-VALUE and first element of the list, then on this result and second element from the list etc. The initial value is ignored on cons pairs as they always contain two elements. (-tree-reduce-from '+ 1 '(1 (1 1) ((1)))) ⇒ 8 (--tree-reduce-from (-concat acc (list it)) nil '(1 (2 3 (4 5)) (6 7))) ⇒ '((7 6) ((5 4) 3 2) 1) -- Function: -tree-mapreduce (fn folder tree) Apply FN to each element of TREE, and make a list of the results. If elements of TREE are lists themselves, apply FN recursively to elements of these nested lists. Then reduce the resulting lists using FOLDER and initial value INIT-VALUE. See ‘-reduce-r-from’ (*note -reduce-r-from::). This is the same as calling ‘-tree-reduce’ (*note -tree-reduce::) after ‘-tree-map’ (*note -tree-map::) but is twice as fast as it only traverse the structure once. (-tree-mapreduce 'list 'append '(1 (2 (3 4) (5 6)) (7 (8 9)))) ⇒ '(1 2 3 4 5 6 7 8 9) (--tree-mapreduce 1 (+ it acc) '(1 (2 (4 9) (2 1)) (7 (4 3)))) ⇒ 9 (--tree-mapreduce 0 (max acc (1+ it)) '(1 (2 (4 9) (2 1)) (7 (4 3)))) ⇒ 3 -- Function: -tree-mapreduce-from (fn folder init-value tree) Apply FN to each element of TREE, and make a list of the results. If elements of TREE are lists themselves, apply FN recursively to elements of these nested lists. Then reduce the resulting lists using FOLDER and initial value INIT-VALUE. See ‘-reduce-r-from’ (*note -reduce-r-from::). This is the same as calling ‘-tree-reduce-from’ (*note -tree-reduce-from::) after ‘-tree-map’ (*note -tree-map::) but is twice as fast as it only traverse the structure once. (-tree-mapreduce-from 'identity '* 1 '(1 (2 (3 4) (5 6)) (7 (8 9)))) ⇒ 362880 (--tree-mapreduce-from (+ it it) (cons it acc) nil '(1 (2 (4 9) (2 1)) (7 (4 3)))) ⇒ '(2 (4 (8 18) (4 2)) (14 (8 6))) (concat "{" (--tree-mapreduce-from (cond ((-cons-pair? it) (concat (symbol-name (car it)) " -> " (symbol-name (cdr it)))) (t (concat (symbol-name it) " : {"))) (concat it (unless (or (equal acc "}") (equal (substring it (1- (length it))) "{")) ", ") acc) "}" '((elips-mode (foo (bar . booze)) (baz . qux)) (c-mode (foo . bla) (bum . bam))))) ⇒ "{elips-mode : {foo : {bar -> booze{, baz -> qux{, c-mode : {foo -> bla, bum -> bam}}" -- Function: -clone (list) Create a deep copy of LIST. The new list has the same elements and structure but all cons are replaced with new ones. This is useful when you need to clone a structure such as plist or alist. (let* ((a '(1 2 3)) (b (-clone a))) (nreverse a) b) ⇒ '(1 2 3)  File: dash.info, Node: Threading macros, Next: Binding, Prev: Tree operations, Up: Functions 2.12 Threading macros ===================== -- Macro: -> (x &optional form &rest more) Thread the expr through the forms. Insert X as the second item in the first form, making a list of it if it is not a list already. If there are more forms, insert the first form as the second item in second form, etc. (-> '(2 3 5)) ⇒ '(2 3 5) (-> '(2 3 5) (append '(8 13))) ⇒ '(2 3 5 8 13) (-> '(2 3 5) (append '(8 13)) (-slice 1 -1)) ⇒ '(3 5 8) -- Macro: ->> (x &optional form &rest more) Thread the expr through the forms. Insert X as the last item in the first form, making a list of it if it is not a list already. If there are more forms, insert the first form as the last item in second form, etc. (->> '(1 2 3) (-map 'square)) ⇒ '(1 4 9) (->> '(1 2 3) (-map 'square) (-remove 'even?)) ⇒ '(1 9) (->> '(1 2 3) (-map 'square) (-reduce '+)) ⇒ 14 -- Macro: --> (x &rest forms) Starting with the value of X, thread each expression through FORMS. Insert X at the position signified by the symbol ‘it’ in the first form. If there are more forms, insert the first form at the position signified by ‘it’ in in second form, etc. (--> "def" (concat "abc" it "ghi")) ⇒ "abcdefghi" (--> "def" (concat "abc" it "ghi") (upcase it)) ⇒ "ABCDEFGHI" (--> "def" (concat "abc" it "ghi") upcase) ⇒ "ABCDEFGHI" -- Macro: -as-> (value variable &rest forms) Starting with VALUE, thread VARIABLE through FORMS. In the first form, bind VARIABLE to VALUE. In the second form, bind VARIABLE to the result of the first form, and so forth. (-as-> 3 my-var (1+ my-var) (list my-var) (mapcar (lambda (ele) (* 2 ele)) my-var)) ⇒ '(8) (-as-> 3 my-var 1+) ⇒ 4 (-as-> 3 my-var) ⇒ 3 -- Macro: -some-> (x &optional form &rest more) When expr is non-nil, thread it through the first form (via ‘->’ (*note ->::)), and when that result is non-nil, through the next form, etc. (-some-> '(2 3 5)) ⇒ '(2 3 5) (-some-> 5 square) ⇒ 25 (-some-> 5 even? square) ⇒ nil -- Macro: -some->> (x &optional form &rest more) When expr is non-nil, thread it through the first form (via ‘->>’ (*note ->>::)), and when that result is non-nil, through the next form, etc. (-some->> '(1 2 3) (-map 'square)) ⇒ '(1 4 9) (-some->> '(1 3 5) (-last 'even?) (+ 100)) ⇒ nil (-some->> '(2 4 6) (-last 'even?) (+ 100)) ⇒ 106 -- Macro: -some--> (x &optional form &rest more) When expr is non-nil, thread it through the first form (via ‘-->’ (*note -->::)), and when that result is non-nil, through the next form, etc. (-some--> "def" (concat "abc" it "ghi")) ⇒ "abcdefghi" (-some--> nil (concat "abc" it "ghi")) ⇒ nil (-some--> '(1 3 5) (-filter 'even? it) (append it it) (-map 'square it)) ⇒ nil  File: dash.info, Node: Binding, Next: Side-effects, Prev: Threading macros, Up: Functions 2.13 Binding ============ Convenient versions of ‘let‘ and ‘let*‘ constructs combined with flow control. -- Macro: -when-let (var-val &rest body) If VAL evaluates to non-nil, bind it to VAR and execute body. Note: binding is done according to ‘-let’ (*note -let::). (fn (VAR VAL) &rest BODY) (-when-let (match-index (string-match "d" "abcd")) (+ match-index 2)) ⇒ 5 (-when-let ((&plist :foo foo) (list :foo "foo")) foo) ⇒ "foo" (-when-let ((&plist :foo foo) (list :bar "bar")) foo) ⇒ nil -- Macro: -when-let* (vars-vals &rest body) If all VALS evaluate to true, bind them to their corresponding VARS and execute body. VARS-VALS should be a list of (VAR VAL) pairs. Note: binding is done according to ‘-let*’ (*note -let*::). VALS are evaluated sequentially, and evaluation stops after the first nil VAL is encountered. (-when-let* ((x 5) (y 3) (z (+ y 4))) (+ x y z)) ⇒ 15 (-when-let* ((x 5) (y nil) (z 7)) (+ x y z)) ⇒ nil -- Macro: -if-let (var-val then &rest else) If VAL evaluates to non-nil, bind it to VAR and do THEN, otherwise do ELSE. Note: binding is done according to ‘-let’ (*note -let::). (fn (VAR VAL) THEN &rest ELSE) (-if-let (match-index (string-match "d" "abc")) (+ match-index 3) 7) ⇒ 7 (--if-let (even? 4) it nil) ⇒ t -- Macro: -if-let* (vars-vals then &rest else) If all VALS evaluate to true, bind them to their corresponding VARS and do THEN, otherwise do ELSE. VARS-VALS should be a list of (VAR VAL) pairs. Note: binding is done according to ‘-let*’ (*note -let*::). VALS are evaluated sequentially, and evaluation stops after the first nil VAL is encountered. (-if-let* ((x 5) (y 3) (z 7)) (+ x y z) "foo") ⇒ 15 (-if-let* ((x 5) (y nil) (z 7)) (+ x y z) "foo") ⇒ "foo" (-if-let* (((_ _ x) '(nil nil 7))) x) ⇒ 7 -- Macro: -let (varlist &rest body) Bind variables according to VARLIST then eval BODY. VARLIST is a list of lists of the form (PATTERN SOURCE). Each PATTERN is matched against the SOURCE "structurally". SOURCE is only evaluated once for each PATTERN. Each PATTERN is matched recursively, and can therefore contain sub-patterns which are matched against corresponding sub-expressions of SOURCE. All the SOURCEs are evalled before any symbols are bound (i.e. "in parallel"). If VARLIST only contains one (PATTERN SOURCE) element, you can optionally specify it using a vector and discarding the outer-most parens. Thus (-let ((PATTERN SOURCE)) ..) becomes (-let [PATTERN SOURCE] ..). ‘-let’ (*note -let::) uses a convention of not binding places (symbols) starting with _ whenever it’s possible. You can use this to skip over entries you don’t care about. However, this is not *always* possible (as a result of implementation) and these symbols might get bound to undefined values. Following is the overview of supported patterns. Remember that patterns can be matched recursively, so every a, b, aK in the following can be a matching construct and not necessarily a symbol/variable. Symbol: a - bind the SOURCE to A. This is just like regular ‘let’. Conses and lists: (a) - bind ‘car’ of cons/list to A (a . b) - bind car of cons to A and ‘cdr’ to B (a b) - bind car of list to A and ‘cadr’ to B (a1 a2 a3 ...) - bind 0th car of list to A1, 1st to A2, 2nd to A3 ... (a1 a2 a3 ... aN . rest) - as above, but bind the Nth cdr to REST. Vectors: [a] - bind 0th element of a non-list sequence to A (works with vectors, strings, bit arrays...) [a1 a2 a3 ...] - bind 0th element of non-list sequence to A0, 1st to A1, 2nd to A2, ... If the PATTERN is shorter than SOURCE, the values at places not in PATTERN are ignored. If the PATTERN is longer than SOURCE, an ‘error’ is thrown. [a1 a2 a3 ... &rest rest] - as above, but bind the rest of the sequence to REST. This is conceptually the same as improper list matching (a1 a2 ... aN . rest) Key/value stores: (&plist key0 a0 ... keyN aN) - bind value mapped by keyK in the SOURCE plist to aK. If the value is not found, aK is nil. Uses ‘plist-get’ to fetch values. (&alist key0 a0 ... keyN aN) - bind value mapped by keyK in the SOURCE alist to aK. If the value is not found, aK is nil. Uses ‘assoc’ to fetch values. (&hash key0 a0 ... keyN aN) - bind value mapped by keyK in the SOURCE hash table to aK. If the value is not found, aK is nil. Uses ‘gethash’ to fetch values. Further, special keyword &keys supports "inline" matching of plist-like key-value pairs, similarly to &keys keyword of ‘cl-defun’. (a1 a2 ... aN &keys key1 b1 ... keyN bK) This binds N values from the list to a1 ... aN, then interprets the cdr as a plist (see key/value matching above). A shorthand notation for kv-destructuring exists which allows the patterns be optionally left out and derived from the key name in the following fashion: - a key :foo is converted into ‘foo’ pattern, - a key ’bar is converted into ‘bar’ pattern, - a key "baz" is converted into ‘baz’ pattern. That is, the entire value under the key is bound to the derived variable without any further destructuring. This is possible only when the form following the key is not a valid pattern (i.e. not a symbol, a cons cell or a vector). Otherwise the matching proceeds as usual and in case of an invalid spec fails with an error. Thus the patterns are normalized as follows: ;; derive all the missing patterns (&plist :foo ’bar "baz") => (&plist :foo foo ’bar bar "baz" baz) ;; we can specify some but not others (&plist :foo ’bar explicit-bar) => (&plist :foo foo ’bar explicit-bar) ;; nothing happens, we store :foo in x (&plist :foo x) => (&plist :foo x) ;; nothing happens, we match recursively (&plist :foo (a b c)) => (&plist :foo (a b c)) You can name the source using the syntax SYMBOL &as PATTERN. This syntax works with lists (proper or improper), vectors and all types of maps. (list &as a b c) (list 1 2 3) binds A to 1, B to 2, C to 3 and LIST to (1 2 3). Similarly: (bounds &as beg . end) (cons 1 2) binds BEG to 1, END to 2 and BOUNDS to (1 . 2). (items &as first . rest) (list 1 2 3) binds FIRST to 1, REST to (2 3) and ITEMS to (1 2 3) [vect &as _ b c] [1 2 3] binds B to 2, C to 3 and VECT to [1 2 3] (_ avoids binding as usual). (plist &as &plist :b b) (list :a 1 :b 2 :c 3) binds B to 2 and PLIST to (:a 1 :b 2 :c 3). Same for &alist and &hash. This is especially useful when we want to capture the result of a computation and destructure at the same time. Consider the form (function-returning-complex-structure) returning a list of two vectors with two items each. We want to capture this entire result and pass it to another computation, but at the same time we want to get the second item from each vector. We can achieve it with pattern (result &as [_ a] [_ b]) (function-returning-complex-structure) Note: Clojure programmers may know this feature as the ":as binding". The difference is that we put the &as at the front because we need to support improper list binding. (-let (([a (b c) d] [1 (2 3) 4])) (list a b c d)) ⇒ '(1 2 3 4) (-let [(a b c . d) (list 1 2 3 4 5 6)] (list a b c d)) ⇒ '(1 2 3 (4 5 6)) (-let [(&plist :foo foo :bar bar) (list :baz 3 :foo 1 :qux 4 :bar 2)] (list foo bar)) ⇒ '(1 2) -- Macro: -let* (varlist &rest body) Bind variables according to VARLIST then eval BODY. VARLIST is a list of lists of the form (PATTERN SOURCE). Each PATTERN is matched against the SOURCE structurally. SOURCE is only evaluated once for each PATTERN. Each SOURCE can refer to the symbols already bound by this VARLIST. This is useful if you want to destructure SOURCE recursively but also want to name the intermediate structures. See ‘-let’ (*note -let::) for the list of all possible patterns. (-let* (((a . b) (cons 1 2)) ((c . d) (cons 3 4))) (list a b c d)) ⇒ '(1 2 3 4) (-let* (((a . b) (cons 1 (cons 2 3))) ((c . d) b)) (list a b c d)) ⇒ '(1 (2 . 3) 2 3) (-let* (((&alist "foo" foo "bar" bar) (list (cons "foo" 1) (cons "bar" (list 'a 'b 'c)))) ((a b c) bar)) (list foo a b c bar)) ⇒ '(1 a b c (a b c)) -- Macro: -lambda (match-form &rest body) Return a lambda which destructures its input as MATCH-FORM and executes BODY. Note that you have to enclose the MATCH-FORM in a pair of parens, such that: (-lambda (x) body) (-lambda (x y ...) body) has the usual semantics of ‘lambda’. Furthermore, these get translated into normal lambda, so there is no performance penalty. See ‘-let’ (*note -let::) for the description of destructuring mechanism. (-map (-lambda ((x y)) (+ x y)) '((1 2) (3 4) (5 6))) ⇒ '(3 7 11) (-map (-lambda ([x y]) (+ x y)) '([1 2] [3 4] [5 6])) ⇒ '(3 7 11) (funcall (-lambda ((_ . a) (_ . b)) (-concat a b)) '(1 2 3) '(4 5 6)) ⇒ '(2 3 5 6) -- Macro: -setq (&rest forms) Bind each MATCH-FORM to the value of its VAL. MATCH-FORM destructuring is done according to the rules of ‘-let’ (*note -let::). This macro allows you to bind multiple variables by destructuring the value, so for example: (-setq (a b) x (&plist :c c) plist) expands roughly speaking to the following code (setq a (car x) b (cadr x) c (plist-get plist :c)) Care is taken to only evaluate each VAL once so that in case of multiple assignments it does not cause unexpected side effects. (fn [MATCH-FORM VAL]...) (progn (-setq a 1) a) ⇒ 1 (progn (-setq (a b) (list 1 2)) (list a b)) ⇒ '(1 2) (progn (-setq (&plist :c c) (list :c "c")) c) ⇒ "c"  File: dash.info, Node: Side-effects, Next: Destructive operations, Prev: Binding, Up: Functions 2.14 Side-effects ================= Functions iterating over lists for side-effect only. -- Function: -each (list fn) Call FN with every item in LIST. Return nil, used for side-effects only. (let (s) (-each '(1 2 3) (lambda (item) (setq s (cons item s))))) ⇒ nil (let (s) (-each '(1 2 3) (lambda (item) (setq s (cons item s)))) s) ⇒ '(3 2 1) (let (s) (--each '(1 2 3) (setq s (cons it s))) s) ⇒ '(3 2 1) -- Function: -each-while (list pred fn) Call FN with every item in LIST while (PRED item) is non-nil. Return nil, used for side-effects only. (let (s) (-each-while '(2 4 5 6) 'even? (lambda (item) (push item s))) s) ⇒ '(4 2) (let (s) (--each-while '(1 2 3 4) (< it 3) (push it s)) s) ⇒ '(2 1) (let ((s 0)) (--each-while '(1 3 4 5) (odd? it) (setq s (+ s it))) s) ⇒ 4 -- Function: -each-indexed (list fn) Call (FN index item) for each item in LIST. In the anaphoric form ‘--each-indexed’, the index is exposed as symbol ‘it-index’. See also: ‘-map-indexed’ (*note -map-indexed::). (let (s) (-each-indexed '(a b c) (lambda (index item) (setq s (cons (list item index) s)))) s) ⇒ '((c 2) (b 1) (a 0)) (let (s) (--each-indexed '(a b c) (setq s (cons (list it it-index) s))) s) ⇒ '((c 2) (b 1) (a 0)) -- Function: -each-r (list fn) Call FN with every item in LIST in reversed order. Return nil, used for side-effects only. (let (s) (-each-r '(1 2 3) (lambda (item) (setq s (cons item s))))) ⇒ nil (let (s) (-each-r '(1 2 3) (lambda (item) (setq s (cons item s)))) s) ⇒ '(1 2 3) (let (s) (--each-r '(1 2 3) (setq s (cons it s))) s) ⇒ '(1 2 3) -- Function: -each-r-while (list pred fn) Call FN with every item in reversed LIST while (PRED item) is non-nil. Return nil, used for side-effects only. (let (s) (-each-r-while '(2 4 5 6) 'even? (lambda (item) (!cons item s))) s) ⇒ '(6) (let (s) (--each-r-while '(1 2 3 4) (>= it 3) (!cons it s)) s) ⇒ '(3 4) -- Function: -dotimes (num fn) Repeatedly calls FN (presumably for side-effects) passing in integers from 0 through NUM-1. (let (s) (-dotimes 3 (lambda (n) (!cons n s))) s) ⇒ '(2 1 0) (let (s) (--dotimes 5 (!cons it s)) s) ⇒ '(4 3 2 1 0) -- Macro: -doto (eval-initial-value &rest forms) Eval a form, then insert that form as the 2nd argument to other forms. The EVAL-INITIAL-VALUE form is evaluated once. Its result is passed to FORMS, which are then evaluated sequentially. Returns the target form. (-doto '(1 2 3) (!cdr) (!cdr)) ⇒ '(3) (-doto '(1 . 2) (setcar 3) (setcdr 4)) ⇒ '(3 . 4) -- Macro: --doto (eval-initial-value &rest forms) Anaphoric form of ‘-doto’ (*note -doto::). Note: ‘it’ is not required in each form. (gethash "key" (--doto (make-hash-table :test 'equal) (puthash "key" "value" it))) ⇒ "value"  File: dash.info, Node: Destructive operations, Next: Function combinators, Prev: Side-effects, Up: Functions 2.15 Destructive operations =========================== -- Macro: !cons (car cdr) Destructive: Set CDR to the cons of CAR and CDR. (let (l) (!cons 5 l) l) ⇒ '(5) (let ((l '(3))) (!cons 5 l) l) ⇒ '(5 3) -- Macro: !cdr (list) Destructive: Set LIST to the cdr of LIST. (let ((l '(3))) (!cdr l) l) ⇒ '() (let ((l '(3 5))) (!cdr l) l) ⇒ '(5)  File: dash.info, Node: Function combinators, Prev: Destructive operations, Up: Functions 2.16 Function combinators ========================= These combinators require Emacs 24 for its lexical scope. So they are offered in a separate package: ‘dash-functional‘. -- Function: -partial (fn &rest args) Take a function FN and fewer than the normal arguments to FN, and return a fn that takes a variable number of additional ARGS. When called, the returned function calls FN with ARGS first and then additional args. (funcall (-partial '- 5) 3) ⇒ 2 (funcall (-partial '+ 5 2) 3) ⇒ 10 -- Function: -rpartial (fn &rest args) Takes a function FN and fewer than the normal arguments to FN, and returns a fn that takes a variable number of additional ARGS. When called, the returned function calls FN with the additional args first and then ARGS. (funcall (-rpartial '- 5) 8) ⇒ 3 (funcall (-rpartial '- 5 2) 10) ⇒ 3 -- Function: -juxt (&rest fns) Takes a list of functions and returns a fn that is the juxtaposition of those fns. The returned fn takes a variable number of args, and returns a list containing the result of applying each fn to the args (left-to-right). (funcall (-juxt '+ '-) 3 5) ⇒ '(8 -2) (-map (-juxt 'identity 'square) '(1 2 3)) ⇒ '((1 1) (2 4) (3 9)) -- Function: -compose (&rest fns) Takes a list of functions and returns a fn that is the composition of those fns. The returned fn takes a variable number of arguments, and returns the result of applying each fn to the result of applying the previous fn to the arguments (right-to-left). (funcall (-compose 'square '+) 2 3) ⇒ (square (+ 2 3)) (funcall (-compose 'identity 'square) 3) ⇒ (square 3) (funcall (-compose 'square 'identity) 3) ⇒ (square 3) -- Function: -applify (fn) Changes an n-arity function FN to a 1-arity function that expects a list with n items as arguments (-map (-applify '+) '((1 1 1) (1 2 3) (5 5 5))) ⇒ '(3 6 15) (-map (-applify (lambda (a b c) `(,a (,b (,c))))) '((1 1 1) (1 2 3) (5 5 5))) ⇒ '((1 (1 (1))) (1 (2 (3))) (5 (5 (5)))) (funcall (-applify '<) '(3 6)) ⇒ t -- Function: -on (operator transformer) Return a function of two arguments that first applies TRANSFORMER to each of them and then applies OPERATOR on the results (in the same order). In types: (b -> b -> c) -> (a -> b) -> a -> a -> c (-sort (-on '< 'length) '((1 2 3) (1) (1 2))) ⇒ '((1) (1 2) (1 2 3)) (-min-by (-on '> 'length) '((1 2 3) (4) (1 2))) ⇒ '(4) (-min-by (-on 'string-lessp 'number-to-string) '(2 100 22)) ⇒ 22 -- Function: -flip (func) Swap the order of arguments for binary function FUNC. In types: (a -> b -> c) -> b -> a -> c (funcall (-flip '<) 2 1) ⇒ t (funcall (-flip '-) 3 8) ⇒ 5 (-sort (-flip '<) '(4 3 6 1)) ⇒ '(6 4 3 1) -- Function: -const (c) Return a function that returns C ignoring any additional arguments. In types: a -> b -> a (funcall (-const 2) 1 3 "foo") ⇒ 2 (-map (-const 1) '("a" "b" "c" "d")) ⇒ '(1 1 1 1) (-sum (-map (-const 1) '("a" "b" "c" "d"))) ⇒ 4 -- Macro: -cut (&rest params) Take n-ary function and n arguments and specialize some of them. Arguments denoted by <> will be left unspecialized. See SRFI-26 for detailed description. (funcall (-cut list 1 <> 3 <> 5) 2 4) ⇒ '(1 2 3 4 5) (-map (-cut funcall <> 5) '(1+ 1- (lambda (x) (/ 1.0 x)))) ⇒ '(6 4 0.2) (-map (-cut <> 1 2 3) (list 'list 'vector 'string)) ⇒ '((1 2 3) [1 2 3] "") -- Function: -not (pred) Take a unary predicate PRED and return a unary predicate that returns t if PRED returns nil and nil if PRED returns non-nil. (funcall (-not 'even?) 5) ⇒ t (-filter (-not (-partial '< 4)) '(1 2 3 4 5 6 7 8)) ⇒ '(1 2 3 4) -- Function: -orfn (&rest preds) Take list of unary predicates PREDS and return a unary predicate with argument x that returns non-nil if at least one of the PREDS returns non-nil on x. In types: [a -> Bool] -> a -> Bool (-filter (-orfn 'even? (-partial (-flip '<) 5)) '(1 2 3 4 5 6 7 8 9 10)) ⇒ '(1 2 3 4 6 8 10) (funcall (-orfn 'stringp 'even?) "foo") ⇒ t -- Function: -andfn (&rest preds) Take list of unary predicates PREDS and return a unary predicate with argument x that returns non-nil if all of the PREDS returns non-nil on x. In types: [a -> Bool] -> a -> Bool (funcall (-andfn (-cut < <> 10) 'even?) 6) ⇒ t (funcall (-andfn (-cut < <> 10) 'even?) 12) ⇒ nil (-filter (-andfn (-not 'even?) (-cut >= 5 <>)) '(1 2 3 4 5 6 7 8 9 10)) ⇒ '(1 3 5) -- Function: -iteratefn (fn n) Return a function FN composed N times with itself. FN is a unary function. If you need to use a function of higher arity, use ‘-applify’ (*note -applify::) first to turn it into a unary function. With n = 0, this acts as identity function. In types: (a -> a) -> Int -> a -> a. This function satisfies the following law: (funcall (-iteratefn fn n) init) = (-last-item (-iterate fn init (1+ n))). (funcall (-iteratefn (lambda (x) (* x x)) 3) 2) ⇒ 256 (funcall (-iteratefn '1+ 3) 1) ⇒ 4 (funcall (-iteratefn 'cdr 3) '(1 2 3 4 5)) ⇒ '(4 5) -- Function: -fixfn (fn &optional equal-test halt-test) Return a function that computes the (least) fixpoint of FN. FN must be a unary function. The returned lambda takes a single argument, X, the initial value for the fixpoint iteration. The iteration halts when either of the following conditions is satisfied: 1. Iteration converges to the fixpoint, with equality being tested using EQUAL-TEST. If EQUAL-TEST is not specified, ‘equal’ is used. For functions over the floating point numbers, it may be necessary to provide an appropriate approximate comparison test. 2. HALT-TEST returns a non-nil value. HALT-TEST defaults to a simple counter that returns t after ‘-fixfn-max-iterations’, to guard against infinite iteration. Otherwise, HALT-TEST must be a function that accepts a single argument, the current value of X, and returns non-nil as long as iteration should continue. In this way, a more sophisticated convergence test may be supplied by the caller. The return value of the lambda is either the fixpoint or, if iteration halted before converging, a cons with car ‘halted’ and cdr the final output from HALT-TEST. In types: (a -> a) -> a -> a. (funcall (-fixfn 'cos 'approx-equal) 0.7) ⇒ 0.7390851332151607 (funcall (-fixfn (lambda (x) (expt (+ x 10) 0.25))) 2.0) ⇒ 1.8555845286409378 (funcall (-fixfn 'sin 'approx-equal) 0.1) ⇒ '(halted . t) -- Function: -prodfn (&rest fns) Take a list of n functions and return a function that takes a list of length n, applying i-th function to i-th element of the input list. Returns a list of length n. In types (for n=2): ((a -> b), (c -> d)) -> (a, c) -> (b, d) This function satisfies the following laws: (-compose (-prodfn f g ...) (-prodfn f’ g’ ...)) = (-prodfn (-compose f f’) (-compose g g’) ...) (-prodfn f g ...) = (-juxt (-compose f (-partial ’nth 0)) (-compose g (-partial ’nth 1)) ...) (-compose (-prodfn f g ...) (-juxt f’ g’ ...)) = (-juxt (-compose f f’) (-compose g g’) ...) (-compose (-partial ’nth n) (-prod f1 f2 ...)) = (-compose fn (-partial ’nth n)) (funcall (-prodfn '1+ '1- 'number-to-string) '(1 2 3)) ⇒ '(2 1 "3") (-map (-prodfn '1+ '1-) '((1 2) (3 4) (5 6) (7 8))) ⇒ '((2 1) (4 3) (6 5) (8 7)) (apply '+ (funcall (-prodfn 'length 'string-to-number) '((1 2 3) "15"))) ⇒ 18  File: dash.info, Node: Development, Next: Index, Prev: Functions, Up: Top 3 Development ************* The dash repository is hosted on GitHub: * Menu: * Contribute:: How to contribute * Changes:: List of significant changes by version * Contributors:: List of contributors  File: dash.info, Node: Contribute, Next: Changes, Up: Development 3.1 Contribute ============== Yes, please do. Pure functions in the list manipulation realm only, please. There’s a suite of tests in dev/examples.el, so remember to add tests for your function, or it might get broken later. Run the tests with ‘./run-tests.sh’. Create the docs with ‘./create-docs.sh’. I highly recommend that you install these as a pre-commit hook, so that the tests are always running and the docs are always in sync: cp pre-commit.sh .git/hooks/pre-commit Oh, and don’t edit ‘README.md’ directly, it is auto-generated. Change ‘readme-template.md’ or ‘examples-to-docs.el’ instead. The same goes for the info manual.  File: dash.info, Node: Changes, Next: Contributors, Prev: Contribute, Up: Development 3.2 Changes =========== Changes in 2.10: • Add ‘-let’ destructuring to ‘-if-let’ and ‘-when-let’ (Fredrik Bergroth) Changes in 2.9: • Add ‘-let’, ‘-let*’ and ‘-lambda’ with destructuring • Add ‘-tree-seq’ and ‘-tree-map-nodes’ • Add ‘-non-nil’ • Add ‘-fix’ • Add ‘-fixfn’ (dash-functional 1.2) • Add ‘-copy’ (Wilfred Hughes) Changes in 2.8: • Add ‘-butlast’ Changes in 2.7: • ‘-zip’ now supports more than two lists (Steve Lamb) • Add ‘-cycle’, ‘-pad’, ‘-annotate’, ‘-zip-fill’ (Steve Lamb) • Add ‘-table’, ‘-table-flat’ (finite cartesian product) • Add ‘-flatten-n’ • ‘-slice’ now supports "step" argument • Add functional combinators ‘-iteratefn’, ‘-prodfn’ • Add ‘-replace’, ‘-splice’, ‘-splice-list’ which generalize ‘-replace-at’ and ‘-insert-at’ • Add ‘-compose’, ‘-iteratefn’ and ‘-prodfn’ (dash-functional 1.1) Changes in 2.6: • Add ‘-is-prefix-p’, ‘-is-suffix-p’, ‘-is-infix-p’ (Matus Goljer) • Add ‘-iterate’, ‘-unfold’ (Matus Goljer) • Add ‘-split-on’, ‘-split-when’ (Matus Goljer) • Add ‘-find-last-index’ (Matus Goljer) • Add ‘-list’ (Johan Andersson) Changes in 2.5: • Add ‘-same-items?’ (Johan Andersson) • A few bugfixes Changes in 2.4: • Add ‘-snoc’ (Matus Goljer) • Add ‘-replace-at’, ‘-update-at’, ‘-remove-at’, and ‘-remove-at-indices’ (Matus Goljer) Changes in 2.3: • Add tree operations (Matus Goljer) • Make font-lock optional Changes in 2.2: • Add ‘-compose’ (Christina Whyte) Changes in 2.1: • Add indexing operations (Matus Goljer) Changes in 2.0: • Split out ‘dash-functional.el’ (Matus Goljer) • Add ‘-andfn’, ‘-orfn’, ‘-not’, ‘-cut’, ‘-const’, ‘-flip’ and ‘-on’. (Matus Goljer) • Fix ‘-min’, ‘-max’, ‘-min-by’ and ‘-max-by’ (Matus Goljer) Changes in 1.8: • Add ‘-first-item’ and ‘-last-item’ (Wilfred Hughes) Changes in 1.7: • Add ‘-rotate’ (Matus Goljer) Changes in 1.6: • Add ‘-min’, ‘-max’, ‘-min-by’ and ‘-max-by’ (Johan Andersson) Changes in 1.5: • Add ‘-sum’ and ‘-product’ (Johan Andersson) Changes in 1.4: • Add ‘-sort’ • Add ‘-reduce-r’ (Matus Goljer) • Add ‘-reduce-r-from’ (Matus Goljer) Changes in 1.3: • Add ‘-partition-in-steps’ • Add ‘-partition-all-in-steps’ Changes in 1.2: • Add ‘-last’ (Matus Goljer) • Add ‘-insert-at’ (Emanuel Evans) • Add ‘-when-let’ and ‘-if-let’ (Emanuel Evans) • Add ‘-when-let*’ and ‘-if-let*’ (Emanuel Evans) • Some bugfixes  File: dash.info, Node: Contributors, Prev: Changes, Up: Development 3.3 Contributors ================ • Matus Goljer (https://github.com/Fuco1) contributed lots of features and functions. • Takafumi Arakaki (https://github.com/tkf) contributed ‘-group-by’. • tali713 (https://github.com/tali713) is the author of ‘-applify’. • Víctor M. Valenzuela (https://github.com/vemv) contributed ‘-repeat’. • Nic Ferrier (https://github.com/nicferrier) contributed ‘-cons*’. • Wilfred Hughes (https://github.com/Wilfred) contributed ‘-slice’, ‘-first-item’ and ‘-last-item’. • Emanuel Evans (https://github.com/shosti) contributed ‘-if-let’, ‘-when-let’ and ‘-insert-at’. • Johan Andersson (https://github.com/rejeep) contributed ‘-sum’, ‘-product’ and ‘-same-items?’ • Christina Whyte (https://github.com/kurisuwhyte) contributed ‘-compose’ • Steve Lamb (https://github.com/steventlamb) contributed ‘-cycle’, ‘-pad’, ‘-annotate’, ‘-zip-fill’ and an n-ary version of ‘-zip’. • Fredrik Bergroth (https://github.com/fbergroth) made the ‘-if-let’ family use ‘-let’ destructuring and improved script for generating documentation. • Mark Oteiza (https://github.com/holomorph) contributed the script to create an info manual. • Vasilij Schneidermann (https://github.com/wasamasa) contributed ‘-some’. • William West (https://github.com/occidens) made ‘-fixfn’ more robust at handling floats. Thanks!  File: dash.info, Node: Index, Prev: Development, Up: Top Index ***** [index] * Menu: * !cdr: Destructive operations. (line 14) * !cons: Destructive operations. (line 6) * -->: Threading macros. (line 32) * --doto: Side-effects. (line 83) * ->: Threading macros. (line 6) * ->>: Threading macros. (line 19) * -all?: Predicates. (line 18) * -andfn: Function combinators. (line 138) * -annotate: Maps. (line 79) * -any?: Predicates. (line 6) * -applify: Function combinators. (line 55) * -as->: Threading macros. (line 46) * -butlast: Other list operations. (line 340) * -clone: Tree operations. (line 122) * -common-prefix: Reductions. (line 223) * -common-suffix: Reductions. (line 233) * -compose: Function combinators. (line 42) * -concat: List to list. (line 22) * -cons*: Other list operations. (line 30) * -const: Function combinators. (line 92) * -contains?: Predicates. (line 57) * -copy: Maps. (line 134) * -count: Reductions. (line 151) * -cut: Function combinators. (line 104) * -cycle: Other list operations. (line 168) * -difference: Set operations. (line 20) * -distinct: Set operations. (line 62) * -dotimes: Side-effects. (line 63) * -doto: Side-effects. (line 72) * -drop: Sublist selection. (line 124) * -drop-last: Sublist selection. (line 136) * -drop-while: Sublist selection. (line 157) * -each: Side-effects. (line 8) * -each-indexed: Side-effects. (line 30) * -each-r: Side-effects. (line 43) * -each-r-while: Side-effects. (line 54) * -each-while: Side-effects. (line 19) * -elem-index: Indexing. (line 9) * -elem-indices: Indexing. (line 21) * -fifth-item: Other list operations. (line 320) * -filter: Sublist selection. (line 8) * -find-index: Indexing. (line 32) * -find-indices: Indexing. (line 60) * -find-last-index: Indexing. (line 46) * -first: Other list operations. (line 234) * -first-item: Other list operations. (line 271) * -fix: Other list operations. (line 376) * -fixfn: Function combinators. (line 175) * -flatten: List to list. (line 33) * -flatten-n: List to list. (line 55) * -flip: Function combinators. (line 80) * -fourth-item: Other list operations. (line 310) * -grade-down: Indexing. (line 81) * -grade-up: Indexing. (line 71) * -group-by: Partitioning. (line 187) * -if-let: Binding. (line 36) * -if-let*: Binding. (line 49) * -inits: Reductions. (line 203) * -insert-at: List to list. (line 109) * -interleave: Other list operations. (line 68) * -interpose: Other list operations. (line 58) * -intersection: Set operations. (line 32) * -is-infix?: Predicates. (line 110) * -is-prefix?: Predicates. (line 86) * -is-suffix?: Predicates. (line 98) * -iterate: Unfolding. (line 9) * -iteratefn: Function combinators. (line 152) * -juxt: Function combinators. (line 31) * -keep: List to list. (line 8) * -lambda: Binding. (line 252) * -last: Other list operations. (line 261) * -last-item: Other list operations. (line 330) * -let: Binding. (line 65) * -let*: Binding. (line 232) * -list: Other list operations. (line 363) * -map: Maps. (line 10) * -map-first: Maps. (line 37) * -map-indexed: Maps. (line 65) * -map-last: Maps. (line 51) * -map-when: Maps. (line 21) * -mapcat: Maps. (line 123) * -max: Reductions. (line 267) * -max-by: Reductions. (line 277) * -min: Reductions. (line 243) * -min-by: Reductions. (line 253) * -non-nil: Sublist selection. (line 79) * -none?: Predicates. (line 30) * -not: Function combinators. (line 117) * -on: Function combinators. (line 66) * -only-some?: Predicates. (line 42) * -orfn: Function combinators. (line 126) * -pad: Other list operations. (line 179) * -partial: Function combinators. (line 9) * -partition: Partitioning. (line 74) * -partition-after-item: Partitioning. (line 177) * -partition-after-pred: Partitioning. (line 145) * -partition-all: Partitioning. (line 86) * -partition-all-in-steps: Partitioning. (line 109) * -partition-before-item: Partitioning. (line 167) * -partition-before-pred: Partitioning. (line 156) * -partition-by: Partitioning. (line 121) * -partition-by-header: Partitioning. (line 132) * -partition-in-steps: Partitioning. (line 97) * -permutations: Set operations. (line 52) * -powerset: Set operations. (line 44) * -prodfn: Function combinators. (line 209) * -product: Reductions. (line 181) * -reduce: Reductions. (line 46) * -reduce-from: Reductions. (line 8) * -reduce-r: Reductions. (line 65) * -reduce-r-from: Reductions. (line 27) * -reductions: Reductions. (line 119) * -reductions-from: Reductions. (line 87) * -reductions-r: Reductions. (line 135) * -reductions-r-from: Reductions. (line 103) * -remove: Sublist selection. (line 23) * -remove-at: List to list. (line 145) * -remove-at-indices: List to list. (line 158) * -remove-first: Sublist selection. (line 37) * -remove-item: Sublist selection. (line 67) * -remove-last: Sublist selection. (line 52) * -repeat: Other list operations. (line 19) * -replace: List to list. (line 67) * -replace-at: List to list. (line 120) * -replace-first: List to list. (line 81) * -replace-last: List to list. (line 95) * -rotate: Other list operations. (line 8) * -rpartial: Function combinators. (line 20) * -running-product: Reductions. (line 191) * -running-sum: Reductions. (line 169) * -same-items?: Predicates. (line 72) * -second-item: Other list operations. (line 286) * -select-by-indices: Sublist selection. (line 168) * -select-column: Sublist selection. (line 198) * -select-columns: Sublist selection. (line 179) * -separate: Partitioning. (line 63) * -setq: Binding. (line 274) * -slice: Sublist selection. (line 85) * -snoc: Other list operations. (line 44) * -some: Other list operations. (line 248) * -some-->: Threading macros. (line 83) * -some->: Threading macros. (line 59) * -some->>: Threading macros. (line 71) * -sort: Other list operations. (line 350) * -splice: Maps. (line 90) * -splice-list: Maps. (line 110) * -split-at: Partitioning. (line 8) * -split-on: Partitioning. (line 28) * -split-when: Partitioning. (line 46) * -split-with: Partitioning. (line 17) * -sum: Reductions. (line 159) * -table: Other list operations. (line 190) * -table-flat: Other list operations. (line 209) * -tails: Reductions. (line 213) * -take: Sublist selection. (line 101) * -take-last: Sublist selection. (line 112) * -take-while: Sublist selection. (line 146) * -third-item: Other list operations. (line 298) * -tree-map: Tree operations. (line 28) * -tree-map-nodes: Tree operations. (line 39) * -tree-mapreduce: Tree operations. (line 84) * -tree-mapreduce-from: Tree operations. (line 103) * -tree-reduce: Tree operations. (line 52) * -tree-reduce-from: Tree operations. (line 69) * -tree-seq: Tree operations. (line 8) * -unfold: Unfolding. (line 25) * -union: Set operations. (line 8) * -unzip: Other list operations. (line 146) * -update-at: List to list. (line 132) * -when-let: Binding. (line 9) * -when-let*: Binding. (line 23) * -zip: Other list operations. (line 95) * -zip-fill: Other list operations. (line 138) * -zip-lists: Other list operations. (line 119) * -zip-with: Other list operations. (line 79)  Tag Table: Node: Top946 Node: Installation2422 Node: Using in a package2989 Node: Fontification of special variables3350 Node: Functions4054 Node: Maps5265 Ref: -map5560 Ref: -map-when5901 Ref: -map-first6479 Ref: -map-last6957 Ref: -map-indexed7430 Ref: -annotate7910 Ref: -splice8400 Ref: -splice-list9181 Ref: -mapcat9643 Ref: -copy10019 Node: Sublist selection10223 Ref: -filter10416 Ref: -remove10868 Ref: -remove-first11274 Ref: -remove-last11801 Ref: -remove-item12322 Ref: -non-nil12717 Ref: -slice12876 Ref: -take13408 Ref: -take-last13716 Ref: -drop14039 Ref: -drop-last14312 Ref: -take-while14572 Ref: -drop-while14922 Ref: -select-by-indices15278 Ref: -select-columns15792 Ref: -select-column16498 Node: List to list16962 Ref: -keep17154 Ref: -concat17657 Ref: -flatten17954 Ref: -flatten-n18713 Ref: -replace19100 Ref: -replace-first19563 Ref: -replace-last20060 Ref: -insert-at20550 Ref: -replace-at20877 Ref: -update-at21267 Ref: -remove-at21758 Ref: -remove-at-indices22246 Node: Reductions22828 Ref: -reduce-from22997 Ref: -reduce-r-from23763 Ref: -reduce24530 Ref: -reduce-r25259 Ref: -reductions-from26130 Ref: -reductions-r-from26845 Ref: -reductions27570 Ref: -reductions-r28195 Ref: -count28830 Ref: -sum29054 Ref: -running-sum29243 Ref: -product29536 Ref: -running-product29745 Ref: -inits30058 Ref: -tails30306 Ref: -common-prefix30553 Ref: -common-suffix30850 Ref: -min31147 Ref: -min-by31373 Ref: -max31896 Ref: -max-by32121 Node: Unfolding32649 Ref: -iterate32888 Ref: -unfold33333 Node: Predicates34141 Ref: -any?34265 Ref: -all?34585 Ref: -none?34915 Ref: -only-some?35217 Ref: -contains?35702 Ref: -same-items?36091 Ref: -is-prefix?36476 Ref: -is-suffix?36799 Ref: -is-infix?37122 Node: Partitioning37476 Ref: -split-at37664 Ref: -split-with37949 Ref: -split-on38352 Ref: -split-when39028 Ref: -separate39668 Ref: -partition40110 Ref: -partition-all40562 Ref: -partition-in-steps40990 Ref: -partition-all-in-steps41487 Ref: -partition-by41972 Ref: -partition-by-header42354 Ref: -partition-after-pred42958 Ref: -partition-before-pred43302 Ref: -partition-before-item43653 Ref: -partition-after-item43964 Ref: -group-by44270 Node: Indexing44707 Ref: -elem-index44909 Ref: -elem-indices45304 Ref: -find-index45687 Ref: -find-last-index46176 Ref: -find-indices46680 Ref: -grade-up47088 Ref: -grade-down47491 Node: Set operations47901 Ref: -union48084 Ref: -difference48526 Ref: -intersection48943 Ref: -powerset49380 Ref: -permutations49593 Ref: -distinct49893 Node: Other list operations50271 Ref: -rotate50496 Ref: -repeat50866 Ref: -cons*51129 Ref: -snoc51516 Ref: -interpose51929 Ref: -interleave52227 Ref: -zip-with52596 Ref: -zip53313 Ref: -zip-lists54145 Ref: -zip-fill54846 Ref: -unzip55169 Ref: -cycle55914 Ref: -pad56316 Ref: -table56639 Ref: -table-flat57428 Ref: -first58436 Ref: -some58808 Ref: -last59117 Ref: -first-item59451 Ref: -second-item59867 Ref: -third-item60147 Ref: -fourth-item60425 Ref: -fifth-item60691 Ref: -last-item60953 Ref: -butlast61245 Ref: -sort61492 Ref: -list61981 Ref: -fix62312 Node: Tree operations62852 Ref: -tree-seq63048 Ref: -tree-map63906 Ref: -tree-map-nodes64349 Ref: -tree-reduce65199 Ref: -tree-reduce-from66081 Ref: -tree-mapreduce66682 Ref: -tree-mapreduce-from67542 Ref: -clone68828 Node: Threading macros69156 Ref: ->69301 Ref: ->>69792 Ref: -->70297 Ref: -as->70853 Ref: -some->71308 Ref: -some->>71682 Ref: -some-->72118 Node: Binding72589 Ref: -when-let72801 Ref: -when-let*73286 Ref: -if-let73809 Ref: -if-let*74204 Ref: -let74821 Ref: -let*80911 Ref: -lambda81851 Ref: -setq82648 Node: Side-effects83464 Ref: -each83658 Ref: -each-while84065 Ref: -each-indexed84523 Ref: -each-r85041 Ref: -each-r-while85474 Ref: -dotimes85849 Ref: -doto86152 Ref: --doto86580 Node: Destructive operations86855 Ref: !cons87028 Ref: !cdr87234 Node: Function combinators87429 Ref: -partial87703 Ref: -rpartial88097 Ref: -juxt88500 Ref: -compose88932 Ref: -applify89485 Ref: -on89916 Ref: -flip90442 Ref: -const90754 Ref: -cut91093 Ref: -not91579 Ref: -orfn91889 Ref: -andfn92323 Ref: -iteratefn92818 Ref: -fixfn93521 Ref: -prodfn95084 Node: Development96152 Node: Contribute96501 Node: Changes97249 Node: Contributors100247 Node: Index101866  End Tag Table  Local Variables: coding: utf-8 End: