
Virtualization

André Przywara, AMD OSRC

June 27th, 2008
Chaos Computer Club Dresden



Virtualization2 June 27th, 2008

Agenda

• What is Virtualization?
• Virtualization technologies
• Hardware virtualization: AMD-V™
• Virtualization in use
• Virtualization demo
• Virtualization outlook



Virtualization3 June 27th, 2008

What is Virtualization



Virtualization4 June 27th, 2008

What is virtualization?

•precise definition difficult

•easy way: running several operating systems at once

•more general: sharing computer resources

•abstraction layer to partition a computer

•differing from

– Emulation

– Containers

– Simulation



Virtualization5 June 27th, 2008

Virtualization dictionary

• Host: physical machine
• Guest: emulated or virtualized machine
• Hypervisor (HV) or Virtual Machine Monitor (VMM): 

System software that manages virtualization
• Paravirtualization: guest is modified to ease or allow 

virtualization
• Full virtualization: allows to run unmodified OS 

kernels
• Hardware virtualized machine (HVM): using 

hardware virtualization
• Domain: XEN term for a guest, could be privileged 

(Dom0) or ordinary (DomU)



Virtualization6 June 27th, 2008

The Virtualization Gap

The Idea of Virtualization dates back into the 1970s

Popek and Goldberg described the requirements for efficient 
virtual machines (1974):
- Equivalence (VM run the same as native machines)
- Resource Control (Hypervisor has control over all resources)
- Efficiency (most instruction run without hypervisor intervention)

Supposed principle: Execute all instructions in user mode, 
system commands will trap and can be emulated

The x86 architecture does (did) not fulfill these requirements

Example: pushf; pop eax; and ax, 0FEFFh; push eax; popf

Several (17) other commands exists

This gap can be bridged by software or by hardware

Software solution is not trivial in development and testing

One hardware implementation is AMD-V



Virtualization7 June 27th, 2008

Why do we need Virtualization ?

 Computers grow bigger and bigger

 Not every application can benefit from this

 Maintenance of large systems can be problematic

 Splitting them up can be a solution

 Computers are capable of running several OS at once

 Possible usage scenarios:

Server consolidation

Legacy applications

System isolation

Development



Virtualization8 June 27th, 2008

Server consolidation

• Imagine important services running for years now on some 
ageing hardware

• Old hardware is capable enough, but likely to fail

• Moving to a new computer can cause pain

• => The service can become a virtualized service

• Old operating system continues to run inside a container

• Containers can be moved around

• Very short downtimes

• Almost no migration issues

• Several services can be merged into one piece of hardware

• Virtualization guarantees separation between services



Virtualization9 June 27th, 2008

Legacy applications

● Some applications require certain environments
● Certain OS versions (RHEL3, Windows 2000, etc.)
● Old incompatible libraries (thread libs, old Apache, ...)
● 32bit only
● Strange set-up compromising security
● Processor numbers limited due to licensing issues

● Those applications can be trapped inside a VM
● Each VM contains one service
● VMs can be tailored to fit application's demand
● Several 32bit applications together can use more than 4 GB 

of RAM



Virtualization10 June 27th, 2008

System isolation

• Enterprise critical services should be isolated
• Don't run a mail and a web server on one machine!
• Compromising one service probably compromises the other
• But: not every services requires a whole machine
• Putting each service on one machine isn't the best choice 

(hardware faults, administration efforts, cost, energy)
• Solution: Put each service in one virtual machine
• Virtualization ensures isolation
• Each system can be secured to a higher level (no modules, 

only very limited services, stricter access policy)
• Hardware pass through even allows firewall virtualization 

Mail Web Database App Internet



Virtualization11 June 27th, 2008

Development

•Testing of applications in different environments
 Different browsers, different operating systems

•Easy rollback of changes

•Using different development suites

•Tracing allows low-level debugging
 Watch low-level things without expensive hardware 

debuggers

•Hardware can be changed quickly
 More or less RAM
 Different hard-disk sizes and numbers
 Using ISO images directly for CD-ROMs
 Switching between SMP and UP

•Testing Client/Server networking systems
 Virtual nets can be arranged quickly and easily
 Emulation of multiple clients or servers



Virtualization12 June 27th, 2008

Virtualization Technologies



Virtualization13 June 27th, 2008

Virtualization Technologies

Different techniques to achieve similar goals:

Emulation (QEMU)

Full Virtualization (VMware, VirtualBox, VirtualPC)

Para-Virtualization (Xen)

HW-Virtualization (Xen/KVM)



Virtualization14 June 27th, 2008

Emulation: QEMU

• QEMU is an open source system emulator
• Consists of two parts:

– A portable, cross-platform CPU emulator
– Various emulated hardware devices

• Emulates whole systems on several architectures
• Pure userspace (but kernel module option)
• Quite slow, but capable
• Both XEN and KVM use the hardware devices from QEMU
• Although QEMU is an emulator, x86 machines can be semi-

virtualized on x86 machines with an optional kernel module
• Performance ratio is about 10% with emulation, better than 

50% with kernel module



Virtualization15 June 27th, 2008

QEMU emulator: CPU emulation

• QEMU runs under various systems: Linux, BSD, Windows, Solaris, 
MacOS X

• Code is portable: supports x86, AMD64, PowerPC, Alpha, Sparc, 
ARM, MIPS, etc.

• Emulated CPUs can be x86, AMD64, ARM, Sparc, PowerPC, MIPS, 
m68k

• Each guest instruction is split up into µOPS
• µOPS have one C function assigned
• Host compiler compiles and optimizes this C function
• QEMU glues those functions together (at runtime)
• Result is fairly optimized code (compare: JIT)
• Translated code is cached for further loop iterations



Virtualization16 June 27th, 2008

QEMU emulator: Hardware emulation

• QEMU comes with a bunch of emulated hardware 
devices

• Although often describes as “drivers”, these are 
actually their counterparts

• Drivers give I/O and MMI/O as input, devices connect to 
real host drivers and emulate the desired behavior

• Devices include networks cards (NE2K_PCI), IDE 
controller (PIIX4), graphics card (Cirrus Logic 54xx), etc.

• Those hardware is quite common and supported out-of-
the-box by most operating systems



Virtualization17 June 27th, 2008

The Virtualization Pioneer: VMware

• Informations are rare and shallow
• Based on 1999's paper and some later benchmark papers

• Technique they use is called: Binary translation

• Bridging the virtualization gap by in-place patching

• Involves the following steps
– Decode guest instructions (non-trivial for x86)
– Scan for critical instructions
– Replace those with some kind of breakpoint
– Stop at a branch instruction
– Let this code block run within the guest's context
– On exit emulate trapping instruction
– Redo with next code block

• Translated blocks will be cached for later reuse

• Blocks can be chained or linked with jumps

• Works on top of existing OS (Linux or Windows)



Virtualization18 June 27th, 2008

VMware technology

• VMware is an ordinary user space application
• uses kernel module to handle memory management 

and low level issues

• VMware ESX merges  
host kernel and hyper-
visor Hardware

App App

VMware

Guest

Host OS                         

(Linux, Windows)

Kernel
module



Virtualization19 June 27th, 2008

VMware's I/O

• Emulates simple standard hardware (like QEMU)

• Provides special guest drivers to increase performance 
and usability

• “VMware tools” provide the following features: 
– Virtual Graphics Driver
– Virtual Disk Driver (SCSI)
– Virtual Network Controller
– Seamless mouse integration
– Shared host file exchange
– Hot-plugging of virtual devices
– Time synchronization

• Improves overall performance much

• Available for Windows, Linux, Solaris, FreeBSD, Netware



Virtualization20 June 27th, 2008

Xen or the Art of Para-Virtualization

• Xen is an open source project
• Commercial support and packaging available

• Introduced para-virtualization into x86 virtualization

• Virtualization gap is bridged by patching the source of 
the guest operating system to avoid critical instructions

• Xen itself (often called Xen HV) is a tiny layer below a 
host OS

• Drivers from a privileged guest (Dom0) are used

• Dom0 is used to control hypervisor operation

• Xen HV needs to be booted first

• loads privileged guest domain as a module

• supports Linux, *BSD, Solaris (for Dom0 and PV)



Virtualization21 June 27th, 2008

Xen Virtualization Architecture

• Xen uses existing Operating System (Dom0) to provide 
drivers

• HV management tools are Dom0 userspace applications

Peripheral
devices

IRQ Mem CPU

Linux
Dom0

Xen Hypervisor

App App
Xen
tools PV

DomU
HVM

DomU



Virtualization22 June 27th, 2008

Linux
Dom0

Paravirtualized drivers in Xen

• Xen uses a backend/frontend architecture

• Driver stub in guest (frontend) forwards I/O request to Dom0

• Dom0 queues the request and redirects them to the hardware

Peripheral
devices IRQ Me

m CPU

Xen Hypervisor

PV
DomU

HVM
DomU

HW BEHW BE
FE FE



Virtualization23 June 27th, 2008

Hardware assisted virtualization: Xen & KVM

• Xen is performing, but requires modified Operating Systems

• Recent hardware features allow unmodified systems to run

• Virtualization gap is bridged by hardware

• Hypervisor sets up the stage, installs handlers and lets the 
system run

• Guests run natively until specific conditions occur

• Processor interrupts the guest and hands control to the HV

• Exception condition include (details later):
– Critical instructions (popf)
– I/O accesses
– Hardware interrupts or exceptions

• Hypervisor can be very simple => less error prone



Virtualization24 June 27th, 2008

HVM domains in Xen

• Hardware virtualized domains since Xen 3.0

• Only DomUs supported

• Integrated in Xen, differences in config file

• Using QEMU driver architecture (called ioemu in Xen)

• Xen provides BIOS code (taken from the Bochs project)

• Guest boots up in real mode and loads it's bootloader

• Host CPU is passed through (although modified)

• Rest of hardware is emulated (QEMU)

• Screen output can be displayed directly or via VNC



Virtualization25 June 27th, 2008

The Kernel Virtual Machine (KVM)

• Quite recent addition to the virtualization arena
• Open Source project sponsored by Qumranet
• Included in Linux since 2.6.20
• Implemented as a 

“Virtualization Driver”
• Requires hardware 

supported virtualization
• easy structure and small

footprint
• uses Linux services

(scheduler, memory)
• not very stable yet, but

advancing rapidly

Hardware

App App

QEMU

Guest

Host OS                         

(Linux)

KVM
module



Virtualization26 June 27th, 2008

Comparison of Virtualization technologies

• VMware Server presents a mature implementation of 
binary translation

• Xen presents a usable paravirtualization solution
• KVM as an example of a recent implementation of 

hardware virtualization

VMware Server Xen PV KVM

Software complexity High Moderate Low
Age 9 years 5 years 2 years
Installation effort Fair High Low
I/O speed Fast Very fast Slow
Maturity state Mature Stable Unstable
Requires HW virtualization Sometimes No Yes
Supports HW virtualization Not really (Yes) Yes
* not on Intel hardware for 64bit guests ** only on Intel hardware for 64bit guests



Virtualization27 June 27th, 2008

AMD-V™ Technology



Virtualization28 June 27th, 2008

AMD-V: Hardware virtualization

• Solves the remaining issues in x86 architecture

• Is implemented in AMD's K8 Rev. F silicon and higher:
– AMD Opteron's and AMD Athlon64's with DDR2 

memory interface (AM2 or L1 sockets)
– All AMD Turion 64 X2 notebook chips
– Disabled in AMD Sempron

chips

Introduces new processor mode: Guest mode

• All instructions in guest are executed conditionally

• Illegal instructions or events causing an exit to Host 
mode



Virtualization29 June 27th, 2008

AMD-V scheme of work
• More implementation details in AMD manual vol 2. sect. 15

• Central structure is the Virtual Machine Control Block

• VMCB contains
– interception vector bitmask describing events
– state save area holding the guest's state

• VMCB is placed somewhere in memory

• Hypervisor fills the VMCB state save area with initial values

• Hypervisor sets bits for critical events

• Calls new command with physical address of the VMCB

• Processor switches now to „managed“ guest mode and 
honours intercepts

Host Mode: VMCB setup Guest mode

VMRUN
#VMEXIT

Exception handling



Virtualization30 June 27th, 2008

The Virtual Machine Control Block

• Bits in Control Area control interception of:
– read/writes of Control Registers (CR0-CR15)
– read/writes of Debug Registers (DR0-DR15)
– exceptions 0-31
– various system instructions (read/writes to gdtr/ldtr/idtr)
– critical user instructions (pushf, popf, cpuid, rdtsc, ...)
– virtualization instructions
– accesses to I/O ports and MSRs
– address of I/O and MSR permission bitmap
– page table handling
– interrupts handling
– exit codes
– nested paging

• State Save Area contains:
– segment and descriptor table registers
– control registers
– flags, stack pointer, instruction pointer
– additional system registers



Virtualization31 June 27th, 2008

New AMD-V instructions

• VMRUN instruction takes physical address of the VMCB

• Processor restores state from the VMCB and runs in 
guest mode

• intercept event causes the processor to exit guest mode

• this is called a „#VMEXIT“ (implicit instruction)

• instruction flow continues behind the VMRUN instruction

• only some processor state is saved in the VMCB:

• some other data can be saved with VMSAVE

• restoring is done with VMLOAD

• guest mode can be left explicitly with VMMCALL



Virtualization32 June 27th, 2008

Additional Hardware Tricks

• Segmentation Limits Support (Rev. D/E)

• Paged real mode (Rev. F / AMD-V)

• Device Exclusion Vector (DEV) (Rev. F / AMD-V)

• Tagged TLBs / Address Space Identifiers (ASIDs)    (Rev. 

F / AMD-V)

• Nested paging (Barcelona & Co.)

• IOMMU (upcoming)



Virtualization33 June 27th, 2008

Segmentation Limits

• Segmentation not effective anymore in 64bit mode
• Although almost no operating system used it, VMware did
• Hypervisor code must be in the guest address space
• Popek/Goldberg requires HV code not to be visible
• VMware used segmentation to hide its code
• Allows executing without reading (not possible with MMU)
• Segments are tagged with a privilege level (rings)
• HV code is on top of virtual memory (4GB)
• segment limit is put just below this code
• AMD re-introduced segment limits in Rev. D/E of AMD64
• allows fast virtualization of 64bit guests in VMware

guests memory HV

0xffffffff0 0xffffefffnew segment limit = 



Virtualization34 June 27th, 2008

Paged Real Mode

• Problem: No access restrictions in real mode
• Hypervisor cannot intercept critical memory accesses 

(VGA memory)
• Modern operating systems don't use real mode, but:

– all of them come up in real mode (bootloaders!)
• One could ignore real mode, but:
• AMD chose to introduce paging in real mode
• Hypervisor sets up page tables
• Processor will issue page faults when accessing critical 

memory
• Hypervisor can trap and emulate access
• Saves a lot of emulation code
• Xen: Emulation is only partial on Intel chips



Virtualization35 June 27th, 2008

Device Exclusion Vector (DEV)

• Passing real hardware to guests is desirable
• I/O and MMIO can be trapped or redirected, but:
• DMA accesses impose a challenge:

– guest knows only about it's own pseudo-physical addresses
– Hardware devices can access any host-physical addresses

• “enlighted guests” can translate pseudo to host, but 
errors or malicious code breaks isolation 

• DEV solves this:
– protection domains are introduced
– each domain is assigned one bit vector defining access to 

memory on a per-page base
– protection domains are assigned to Hypertransport devices
– results are cached in the northbridge

Details in chapter 15.23 (External access protection) of AMD manual 
vol. 2



Virtualization36 June 27th, 2008

Tagged TLB

• Translation Lookaside Buffer accelerates translation of 
virtual memory

• Page table walks are cached in the TLBs
• changing of virtual memory arrangement (task 

switches) requires flushing the TLB
• Re-walking the page table can be costly, TLB hit is 

crucial for performance
• tagging each TLB entry with an Address Space Identifier 

(ASID) can avoid unnecessary flushes
• TLB entries stay with their guests
• no need to flush all ASIDs on guest switches
• Current implementation in Xen gives 11% improvement
• future processors will introduce “Flush-by-ASID”



Virtualization37 June 27th, 2008

TLB usage illustrated

Used by guest

Used by hypervisor

unused

#VMEXIT



Virtualization38 June 27th, 2008

Tagged TLB operation illustrated

Used by guest

Used by hypervisor

unused

#VMEXIT



Virtualization39 June 27th, 2008

Nested Paging (RVI)

• Hardware did not virtualize Memory management
• Virtual memory management must be emulated by the 

hypervisor
• Shadow page tables hold real guest entries
• Any access to the page tables must be trapped and 

emulated
• Barcelona introduces Rapid Virtualization Indexing
• each guest has it's own CR3 register (gCR3)
• Processor does guest page table walk and ...
• appends host page table walk automatically (nCR3)
• result is cached in TLB
• guest can manage its own page tables undisturbed
• already implemented in Xen: 15 – 20% improvement



Virtualization40 June 27th, 2008

Nested Paging operation

two level address translation: GV -> GP -> HP

Physical memory

Linear addresses

gCR3

guest physical addresses

page tables

host physical addresses

nCR3

host page tables

Linear addresses

gCR3

guest physical addresses

page tables
Linear addresses

gCR3

guest physical addresses

page tables
Linear addresses

gCR3

guest physical addresses

page tables ...

TLB



Virtualization41 June 27th, 2008

IOMMU

• Access to hardware is usually done by the hypervisor
• Direct access from the guest would improve 

performance
• DEV requires the guest driver to know the real 

addresses
• IOMMU allows remapping of DMA addresses
• comparable to virtual memory for devices
• Allows safe access from within guests
• guest drivers can use their own view of memory
• will be implemented in host/bus bridges (chipset)
• will allow virtualizable devices
• Xen patches already upstream



Virtualization42 June 27th, 2008

Virtualization in use



Virtualization43 June 27th, 2008

QEMU in real life: Installation

 qemu (still) requires GCC version 3, so use distribution 
packages (or install gcc3)

 ordinary user space application, not even root-only
 contains binaries for different emulation targets:

– x86_32, x86_64, arm, sparc(64), mips(64), powerpc(64)...
 qemu-system-<arch> for full system emulation
 qemu-<arch> for Linux user land emulation
 installs various BIOS binaries
 contains qemu-img for handling image files
 use (optional) kernel module: kqemu
 $ modprobe kqemu
 Make sure /dev/kqemu is existent and writable



Virtualization44 June 27th, 2008

QEMU in real life: Running guest

 qemu-system-x86_64

-hda /path/to/hdd/image

-m 192 (Megabytes of memory)

-k de (for German keyboards)

-cdrom /path/to/image.iso

-boot d (boot from CD-ROM)

-smp 2 (emulate dual processor machine)

-usb (enable USB emulation)



Virtualization45 June 27th, 2008

QEMU in real life: tips

 Remote display via VNC
-vnc :0

 Qemu monitor: Alt+1 in guest window
– Check guest
– Save, restore, suspend
– inserting/removing of CD-ROMs (.iso files)

 Direct Linux kernel loading:
-kernel vmlinuz-x.y.z -append 'ro root=/dev/hda1'

 USB tablet emulation
– Absolute reporting of position helps avoid lags
– “Grabless” mouse feature
-usb -usbdevice tablet



Virtualization46 June 27th, 2008

QEMU disk images

 Virtual harddisks are contained in files:
– Raw images: can be sparse (UNIX-way), easy to loop-mount, 

copying usually blows them up
– QCOW images: ordinary file, includes tables of used sectors, 

grows with usage
 Supported by Xen, KVM, QEMU
 Supports backing files 

– VMDK: same as QCOW, but from VMWare
 QEMU (and Xen and KVM) provide qemu-img

– Can create image file in various formats
– Can convert between all of them
– Joining and splitting backing files
– Supported formats: parallels qcow2 vvfat vpc bochs dmg 

cloop vmdk qcow cow host_device raw



Virtualization47 June 27th, 2008

Xen in real life: Installation

 Avoid building Xen, but use distribution packages
 Usually packages for

– Xen hypervisor (single ELF file, looks like a kernel)
– PV kernel (for Dom0, vmlinuz-2.6.18.8-xen{,0,U})
– Xen tools (mostly Python scripts for controlling guests)
– sometimes: ioemu (support files for hardware virtualization)

 enter Xen into grub (which is required):
kernel /boot/xen.gz
module /boot/vmlinuz-2.6.18.8-xen0 root=/dev/sda5...
initrd /boot/initrd.gz

 reboot! ;-(



Virtualization48 June 27th, 2008

Xen in real life: Configuration files

 Xen uses Python configuration files
 cp /etc/xen/xmexample .  (for PV DomUs)
 adjust following options:
kernel=/some/path/vmlinuz-2.6.18.8-xen{,U}
memory=<Megabytes>
name=<Unique name>
disk=['phy:hda1,hda1,w', ',hdc:cdrom,r']    or
disk=['file:/data/slamd64-12.hdd.img,hda,w'] or
disk=['tap:qcow:/data/slamd64_'+str(num)
+'.qcow,hda,w']



Virtualization49 June 27th, 2008

Xen in real life: Starting guests

 Using xm tool (Python script)
xm create <config.file>
xm list (showing all domains)
xm vcpu-list, xm vcpu-pin (changing CPU affinity)
xm pause <domid>, xm unpause
xm migrate (to another host)
xm destroy 
xm top (for monitoring guests)
xm console (for PV guests or serial console on HVM)
xm info (for hardware and hypervisor info)



Virtualization50 June 27th, 2008

Xen in real life: neat tricks

 Ballooning: Change memory during runtime
$ xm mem-set <domid> <memory>

 Live Migration: Move guest to another host
$ xm migrate -l <domid> <hostname>



Virtualization51 June 27th, 2008

KVM in real life: Installation

 KVM is already in Linux, but better use KVM packaged 
modules (or distribution versions)

 KVM consists of:
– kernel module(s): virtualization drivers (for AMD and Intel)
– library for accessing these drivers (libkvm)
– patched qemu (efforts to merge are underway)

 no reboot necessary: modprobe kvm-amd



Virtualization52 June 27th, 2008

KVM in real life: Running guests

 launch patched qemu with usual options:

$ qemu-system-x86_64 -hda disk.img -m 512

 every VCPU is a thread

 memory is allocated from userland (can be swapped)

 Make sure /dev/kvm is there and is accessible

– Watch out for a message: uses qemu emulation otherwise!



Virtualization53 June 27th, 2008

Multi processor considerations

• Multi-core machines are perfect for virtualization
• Virtual machines can be load balanced across the cores

– multiple guests can be scheduled on one core
– guests can be restricted to certain cores

• Exclusive assignment of guests to cores is possible
• SMP guests are possible
• more cores (or more processors) 

offer more capacity for virtual 
machines => scales naturally

• I/O and RAM bandwidth gets 
important

• AMD Opteron architecture's DCA     is 
superior in scaling

AMD
CPU

AMD
CPU

M
E
M

M
E
M

AMD
CPU

AMD
CPU

M
E
M

M
E
M

I/O

I/O

I/O

I/O

ccHT



Virtualization54 June 27th, 2008

Migration

• Virtual machines consist of configuration options and 
disk images

• Both can be simply copied between machines
• Even easier with network storage (SAN or NAS)
• Virtual hardware is identical in the same hypervisor
• Migration scenario:

– shutdown virtual machine on old server
– copy image over to new machine
– start up copied image on new server

• Guest network configuration should be flexible (DHCP)



Virtualization55 June 27th, 2008

Live migration

• Downtimes for migration not always desirable
• Xen (and others) offer live migration
• Image will be copied while the guest is running:

– Source guest image will be marked as read-only
– image copying starts
– any writes at the source will be catched and transmitted
– this is done with hard disk content and RAM content as well
– if all data is transmitted, source guest will be suspended
– at the same time target guest will be resumed
– downtime is in millisecond range
– TCP connections stay alive!

• Hardware upgrade or repair scenario:
– live-migrate all machines to a temporary host
– shut down original host, repair or upgrade, then restart
– migrate virtual machines back



Virtualization56 June 27th, 2008

Real time challenges

• Virtualization imposes challenges on timing
• Hypervisor catches at least timer interrupts and cares about 

scheduling
• guest time would be halted if HV takes over
• TSC is also virtualized!
• VMCB contains TSC offset field to compensate loss of time
• trade-off between cycle-correctness and wall clock time 

deviation
• Real time kernels do not simply work within hardware 

virtualized domains
• Real time qualities have to be integrated into the hypervisor
• SYSGO and Virtual Logix work on real time virtualization 

solutions
• Issues are known and will be solved!



Virtualization57 June 27th, 2008

High availability

• Live migration allows fast switching between hosts
• Feature can be used to ensure high availability:

– constantly syncing status from one host to another
– guest on fail-over machine is suspended
– will be resumed when needed

• Machine Check Architecture (MCA) reports (potential) 
hardware failures on x86

• Correctable errors get reported => flaky machines can 
be detected

• Recent efforts by AMD implement MCA in Xen 
hypervisor

• Adjustable policy reports exceptions to either 
hypervisor, managing Dom0 or DomU guest directly



Virtualization58 June 27th, 2008

Virtual switch (xen-br0)

Possible Xen network topologies

Guest

b
r
0

Guest

Guest

vif0

eth0

vif1

vif2

Guest

Guest

Guest

Virtual NICs (routing)

Guest

Guest

Guest

eth0

Guest         

Guest         tun1

Guest         

Routing

tun0 TCP/IP

tun2



Virtualization59 June 27th, 2008

Virtualization demo



Virtualization60 June 27th, 2008

Benchmarks



Virtualization61 June 27th, 2008

Benchmarking virtual machines

 Be careful:
– Time in guests is mostly unstable
– I/O or VMEXITs can make things a lot slower
– Keep all conditions the same (HV, host & guest kernel, ...)

 Kind of benchmarks:
– CPU: taylor_pi
– CPU+mem: povray benchmark.ini
– CPU+mem+I/O: kernbench (-s -H -O -M)

 Benchmarks relative to native
 Used machine: Tyan server, 4*AMD Opteron 8220, 16GB 

RAM
 SW: SLAMD64 12.0, KVM-69, qemu 0.9.0, Xen unstable, 

Linux 2.6.25.3 (2.6.18.8 in Xen)



Virtualization62 June 27th, 2008

Pure CPU load: taylor_pi

native Xen Dom0 Xen DomU Xen HVM KVM qemu kqemu
0

20

40

60

80

100

120

taylor_pi



Virtualization63 June 27th, 2008

CPU + memory: POVRay

native Xen 
Dom0

Xen 
DomU

Xen HVM KVM qemu kqemu
0

10

20

30

40

50

60

70

80

90

100

povray benchmark.ini



Virtualization64 June 27th, 2008

CPU + memory + I/O: kernbench

native Xen Dom0 Xen DomU Xen HVM KVM qemu kqemu
0

20

40

60

80

100

120

kernbench -n 5 -s -H -O -M (linux 2.6.25.3 auf tmpfs)



Virtualization65 June 27th, 2008

Nested paging performance: kernbench

native KVM shadow KVM NPT 4K KVM NPT 2M
0

10

20

30

40

50

60

70

80

90

100

kernbench on Phenom 9550, KVM with NPT



Virtualization66 June 27th, 2008

Nested Paging performance



Virtualization67 June 27th, 2008

Paravirtualized Drivers Benchmark

                            native (Dom0)                         RHEL3 HVM                  RHEL3 HVM with PV drivers

NetIO benchmark running under Dom0 or RHEL3 HVM-DomU (using a 2.4.21-47.EL UP kernel)

System: IBM x3455 server with 2P2C Opteron 2210, 8GB RAM, 2 Broadcom TG3 NICs, running OpenSuse 
10.2 64 bit with Xen unstable (Linux 2.6.18)

Server side was Barcelona prototype (4P4C) with 8GB RAM, 2 Broadcom TG3 NICs, running Fedora 7 with 
2.6.21



Virtualization68 June 27th, 2008

Virtualization outlook



Virtualization69 June 27th, 2008

Future Direction of Virtualization

• New HW technologies provide explicit support
– Increase CPU assistance
– I/O MMU’s and virtualization-aware I/O devices
– reduce world switch times (by improved chip design)

• Operating systems become virtualization-aware
– OSes provide information to the hypervisor (PV)
– Skip expensive-to-virtualize operations
– reduce number of world switches
– paravirtualized drivers become available (e.g. from SuSE)
– Hypervisors get more and more integrated (RHEL5, SLES10, 

Windows Server 2008 or KVM approach)



Virtualization70 June 27th, 2008

Hybrid hypervisor

• Idea: combine advantages of para-virtualization with 
unmodified guests

• Way to go: avoid costly world switches
• Solution: insert hypervisor code into guests memory
• Injected code can check exit conditions within the guest
• Example: old Windows versions utilize TPR very often 

(600,000 times per second!)
• TPR is accessed via MMIO, will cause #VMEXIT
• round trip can be up to 2500 cycles
• catching access without exit is crucial for performance



Virtualization71 June 27th, 2008

Virtualized Appliances

Operating system will be 
coupled with Application.

Hardware

Virtualization
Hardware & Systems

Application

Operating System
Application Control

Virtualization layer will be 
coupled with HW.

Pre-configured, purpose-built virtual device
Pre-installed and pre-configured OS & application
Limited configuration/customization exposed to user
Simple installation and setup
Doesn’t require dedicated machine



Virtualization72 June 27th, 2008

Virtualization goes mainstream

• Major Linux vendors include virtualization in their 
products

• Example: RHEL 5 and SLES 10 include Xen
• Use is easy:

– use software package to install Xen support
– reboot machine
– choose Xen from the boot loader
– fire up virtualization management GUI to control virtual 

machines
• Even community distributions include Xen
• Microsoft/Novell deal includes Xen support for Windows
• Novell ships paravirtualized drivers for Windows



Virtualization73 June 27th, 2008

Paravirtualized drivers

• Trap and emulation of I/O in hardware virtualized guests 
is very costly

• I/O performance (network, disk) is quite poor
• PV drivers avoid unnecessary VMEXITs
• optional package is used after installation
• PV drivers redirect high level request (read a sector, 

send an Ethernet frame) directly to the hypervisor
• Xen uses shared memory pages to avoid copying
• Pages with guest data are remapped to the hypervisor
• Performance is very good
• Vendors provide PV drivers even for legacy systems (old 

Windows versions, RHEL 3&4, SLES 9, ...)



Virtualization74 June 27th, 2008

TODO

 pre-virtualization: chroot, container, UML
 DONE: Disk images (sparse, qcow, other, qemu-img)
 DONE: benchmark slides
 Cancelled: Virtual Box, MS Hyper-V
 DONE: Check beamer
 DONE: Install and check Xen
 DONE: Install and check KVM
 DONE: Guest images


